首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   245篇
  免费   21篇
  国内免费   9篇
  2023年   1篇
  2022年   4篇
  2021年   1篇
  2020年   1篇
  2019年   6篇
  2018年   4篇
  2017年   1篇
  2016年   1篇
  2015年   21篇
  2014年   16篇
  2013年   20篇
  2012年   13篇
  2011年   16篇
  2010年   12篇
  2009年   10篇
  2008年   5篇
  2007年   9篇
  2006年   11篇
  2005年   4篇
  2004年   6篇
  2003年   5篇
  2002年   6篇
  2001年   4篇
  2000年   5篇
  1999年   5篇
  1998年   9篇
  1997年   9篇
  1996年   4篇
  1995年   3篇
  1994年   7篇
  1993年   4篇
  1992年   4篇
  1991年   8篇
  1990年   2篇
  1989年   3篇
  1988年   6篇
  1987年   1篇
  1986年   5篇
  1985年   3篇
  1984年   3篇
  1982年   3篇
  1981年   3篇
  1979年   1篇
  1978年   1篇
  1977年   3篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
  1955年   1篇
  1954年   2篇
排序方式: 共有275条查询结果,搜索用时 31 毫秒
21.
22.
23.
We set out to identify molecular mechanisms underlying the onset of necrotic Ca(2+) overload, triggered in two epithelial cell lines by oxidative stress or metabolic depletion. As reported earlier, the overload was inhibited by extracellular Ca(2+) chelation and the cation channel blocker gadolinium. However, the surface permeability to Ca(2+) was reduced by 60%, thus discarding a role for Ca(2+) channel/carrier activation. Instead, we registered a collapse of the plasma membrane Ca(2+) ATPase (PMCA). Remarkably, inhibition of the Na(+)/K(+) ATPase rescued the PMCA and reverted the Ca(2+) rise. Thermodynamic considerations suggest that the Ca(2+) overload develops when the Na(+)/K(+) ATPase, by virtue of the Na(+) overload, clamps the ATP phosphorylation potential below the minimum required by the PMCA. In addition to providing the mechanism for the onset of Ca(2+) overload, the crosstalk between cation pumps offers a novel explanation for the role of Na(+) in cell death.  相似文献   
24.
Liposomal drugs are a useful alternative to conventional drugs and hold great promise for targeted delivery in the treatment of many diseases. Most of the liposomal drugs on the market or under clinical trials include cholesterol as a membrane stabilizing agent. Here, we used liposomal CA4P, an antivascular drug, to demonstrate that cholesterol content can actually modulate the release and cytotoxicity of liposomal drugs in a delicate and predictable manner. We found that both the rate of the CA4P release from the interior aqueous compartment of the liposomes to the bulk aqueous phase and the extent of the drug's cytotoxicity undergo a biphasic variation, as large as 50%, with liposomal cholesterol content at the theoretically predicted C(r), e.g., 22.0, 22.2, 25.0, 33.3, 40.0, and 50.0 mol % cholesterol for maximal superlattice formation. It appears that at C(r), CA4P can be released from the liposomes more readily than at non-C(r), probably due to the increased domain boundaries between superlattice and nonsuperlattice regions, which consequently results in increased cytotoxicity. The idea that the increased domain boundaries at C(r) would facilitate the escape of molecules from membranes was further supported by the data of dehydroergosterol transfer from liposomes to MβCD. These results together show that the functional importance of sterol superlattice formation in liposomes can be propagated to distal targeted cells and reveal a new, to our knowledge, mechanism for how sterol content and membrane lateral organization can control the release of entrapped or embedded molecules in membranes.  相似文献   
25.
26.
Heterogeneity in narrowing among individual airways is an important contributor to airway hyperresponsiveness. This paper investigates the contribution of longitudinal heterogeneity (the variability along the airway in cross-sectional area and shape) to airway resistance (R(aw)). We analyzed chest high-resolution computed tomography scans of 8 asthmatic (AS) and 9 nonasthmatic (NA) subjects before and after methacholine (MCh) challenge, and after lung expansion to total lung capacity. In each subject, R(aw) was calculated for 35 defined central airways with >2 mm diameter. Ignoring the area variability and noncircular shape results in an underestimation of R(aw) (%U(total)) that was substantial in some airways (~50%) but generally small (median <6%). The average contribution of the underestimation of R(aw) caused by longitudinal heterogeneity in the area (%U(area)) to %U(total) was 36%, while the rest was due to the noncircularity of the shape (%U(shape)). After MCh challenge, %U(area) increased in AS and NA (P < 0.05). A lung volume increase to TLC reduced %U(total) and %U(area) in both AS and NA (P < 0.0001, except for %U(total) in AS with P < 0.01). Only in NA, %U(shape) had a significant reduction after increasing lung volume to TLC (P < 0.005). %U(area) was highly correlated, but not identical to the mean-normalized longitudinal heterogeneity in the cross-sectional area [CV(2)(A)] and %U(shape) to the average eccentricity of the elliptical shape. This study demonstrates that R(aw) calculated assuming a cylindrical shape and derived from an average area along its length may, in some airways, substantially underestimate R(aw). The observed changes in underestimations of R(aw) with the increase in lung volume to total lung capacity may be consistent with, and contribute in part to, the differences in effects of deep inhalations in airway function between AS and NA subjects.  相似文献   
27.
28.
29.
Perfluorocarbons (PFCs) hold great promise for biomedical applications. However, relatively little is known about the impact of these chemicals on membranes. We used unilamellar vesicles to explore the effects of PFCs on membrane packing and vesicle stability. Four clinically relevant PFCs with varying vapor pressures (PP1, 294 mbar; PP2, 141 mbar; PP4, 9.6 mbar; and PP9, 2.9 mbar) were examined. Microscopy imaging and spectroscopic measurements suggest that PFCs, especially those with high vapor pressures, lead to vesicle fusion within hours. Upon exposure to PP1 and PP2 for 72 h, vesicles retained a spherical shape, but the size changed from ∼200 nm to ∼20-40 μm. In addition, membrane packing underwent marked changes during this timeframe. A significant decrease in water content in the lipid polar headgroup regions occurred during the first 1-2-h exposure to PFCs, followed by a steady increase in water content over time. Possible mechanisms were proposed to explain these dramatic structural changes. The finding that chemically inert PFCs exhibited fusogenic activity and marked changes in membrane surface packing is novel, and should be considered when using PFCs for biomedical applications.  相似文献   
30.
To determine the spatial distributions of pulmonary perfusion, shunt, and ventilation, we developed a compartmental model of regional (13)N-labeled molecular nitrogen ((13)NN) kinetics measured from positron emission tomography (PET) images. The model features a compartment for right heart and pulmonary vasculature and two compartments for each region of interest: 1) aerated alveolar units and 2) alveolar units with no gas content (shunting). The model was tested on PET data from normal animals (dogs and sheep) and from animals with experimentally injured lungs simulating acute respiratory distress syndrome. The analysis yielded estimates of regional perfusion, shunt fraction, and specific ventilation with excellent goodness-of-fit to the data (R(2) > 0.99). Model parameters were estimated to within 10% accuracy in the presence of exaggerated levels of experimental noise by using a Monte Carlo sensitivity analysis. Main advantages of the present model are that 1) it separates intraregional blood flow to aerated alveolar units from that shunting across nonaerated units and 2) it accounts and corrects for intraregional tracer removal by shunting blood when estimating ventilation from subsequent washout of tracer. The model was thus found to provide estimates of regional parameters of pulmonary function in sizes of lung regions that could potentially approach the intrinsic resolution for PET images of (13)NN in lung (approximately 7.0 mm for a multiring PET camera).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号