首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   215篇
  免费   34篇
  249篇
  2021年   3篇
  2020年   2篇
  2018年   2篇
  2017年   1篇
  2016年   14篇
  2015年   8篇
  2014年   16篇
  2013年   12篇
  2012年   16篇
  2011年   10篇
  2010年   11篇
  2009年   8篇
  2008年   23篇
  2007年   16篇
  2006年   7篇
  2005年   15篇
  2004年   8篇
  2003年   11篇
  2002年   5篇
  2001年   7篇
  2000年   6篇
  1999年   4篇
  1998年   3篇
  1996年   1篇
  1995年   4篇
  1993年   2篇
  1992年   2篇
  1991年   7篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
  1973年   3篇
  1972年   2篇
  1971年   2篇
  1970年   2篇
  1968年   1篇
  1966年   1篇
排序方式: 共有249条查询结果,搜索用时 10 毫秒
91.
The floor plate is known to be a source of repellent signals for cranial motor axons, preventing them from crossing the midline of the hindbrain. However, it is unknown which molecules mediate this effect in vivo. We show that Slit and Robo proteins are candidate motor axon guidance molecules, as Robo proteins are expressed by cranial motoneurons, and Slit proteins are expressed by the tissues that delimit motor axon trajectories, i.e. the floor plate and the rhombic lip. We present in vitro evidence showing that Slit1 and Slit2 proteins are selective inhibitors and repellents for dorsally projecting, but not for ventrally projecting, cranial motor axons. Analysis of mice deficient in Slit and Robo function shows that cranial motor axons aberrantly enter the midline, while ectopic expression of Slit1 in chick embryos leads to specific motor axon projection errors. Expression of dominant-negative Robo receptors within cranial motoneurons in chick embryos strikingly perturbs their projections, causing some motor axons to enter the midline, and preventing dorsally projecting motor axons from exiting the hindbrain. These data suggest that Slit proteins play a key role in guiding dorsally projecting cranial motoneurons and in facilitating their neural tube exit.  相似文献   
92.
We have developed a novel system for insertional mutagenesis in rice (Oryza sativa) based on the maize (Zea mays) enhancer/suppressor mutator (En/Spm) element. In this system, a single T-DNA construct with Spm-transposase and the non-autonomous defective suppressor mutator (dSpm) element is used in conjunction with green fluorescent protein (GFP) and Discosoma sp. Red Fluorescence Protein (DsRed) fluorescent markers to select unlinked stable transpositions of dSpm. Using this system, we could demonstrate high frequencies of unlinked germinal transposition of dSpm in rice. Analysis of dSpm flanking sequences from 353 stable insertion lines revealed that the dSpm insertions appear to be widely distributed on rice chromosomes with a preference for genic regions (70%). The dSpm insertions appear to differ from Activator-Dissociation (Ac-Ds) elements in genomic distribution and exhibit a greater fraction of unlinked transpositions when compared with Ds elements. The results obtained in this study demonstrate that the maize En/Spm element can be used as an effective tool for functional genomics in rice and can complement efforts using other insertional mutagens. Further, the efficacy of the non-invasive fluorescence-based selection system is promising for its application to other crops.  相似文献   
93.
94.
The objective of this study is to understand the influence of pH and effect of cosolvent (glucose) on the stabilization of bovine α-lactalbumin by using ultrasonic techniques. Values of density, ultrasonic velocity and viscosity were measured for bovine α-lactalbumin (5 mg/ml) dissolved in phosphate buffer (pH 2, 5, 7, 9 and 12) solutions mixed with and without the cosolvent at 30 °C. These measurements were used to calculate few thermo-acoustical parameters such as adiabatic compressibility, intermolecular free length, acoustic impedance, relaxation time, relative association constant, the partial apparent specific volume and the partial apparent specific adiabatic compressibility for the said systems. The obtained results revealed a strong comparison between the effects of acidic and alkaline pH values on protein denaturation, i.e., the acidic pH are instantaneous and are of less magnitude whereas alkaline pH are slower but sharper. Further the present study supports the fact that the presence of glucose stabilizes α-lactalbumin against denaturation due to pH variation, which may be due to the strengthening of non-covalent interactions and the steric exclusion effect.  相似文献   
95.
96.
A halotolerant bacterial isolate-MHC10 with broad spectrum antibacterial activity against clinical pathogens was isolated from saltpans located in Tuticorin and Chennai (India). 16S rRNA gene analysis of MHC10 revealed close similarity to that of Bacillus methylotrophicus. The culture conditions of B. methylotrophicus MHC10 strain were optimized for antibacterial production using different carbon and nitrogen sources, as well as varying temperature, pH, sodium chloride (NaCl) concentrations and incubation periods. The maximum antibacterial activity of B. methylotrophicus MHC10 was attained when ZMB was optimized with 1 % (w/v) glucose, 0.1 % (w/v) soybean meal which corresponded to a C/N ratio of 38.83, temperature at 37 °C, pH 7.0 and 8 % NaCl. The activity remained stable between 72 and 96 h and then drastically decreased after 96 h. Solvent extraction followed by chromatographic purification steps led to the isolation of hydroquinone (benzene-1,4-diol). The structure of the purified compound was elucidated based on FTIR, 1H NMR, and 13C NMR spectroscopy. The compound exhibited efficient antibacterial activity against both Gram-positive and Gram-negative bacterial pathogens. The minimum inhibitory concentration (MIC) for Gram-positive pathogens ranged from 15.625 to 62.5 µg/mL?1, while it was between 7.81 and 250 µg/mL?1 for Gram-negative bacterial pathogens. This is the first report of hydroquinone produced by halotolerant B. methylotrophicus exhibiting promising antibacterial activity.  相似文献   
97.

Key message

A lipoxygenase-free soybean mutant line (H70) induced by gamma ray was selected and its detailed information about the lipoxygenase was analyzed by comparison of DNA sequence.

Abstract

Soybean seeds contain three lipoxygenase enzymes, which induce a beany or grassy flavor. The elimination of lipoxygenases can reduce the poor stability and off-flavors of soybean oil and protein products. In this study, we selected a soybean mutant (H70) in which the three lipoxygenases had been mutated using gamma rays. To obtain detailed information about the lipoxygenase, we investigated the sequences of the Lox1, Lox2 and Lox3 genes in H70 compared to the original cultivar, Hwanggum. Comparisons of the sequences of the Lox1 and Lox2 genes in H70 with those in a line with normal lipoxygenase (HG) showed that the mutations in these genes affected a highly conserved group of six histidine residues necessary for enzymatic activity. Lox1 in H70 contained a 74 bp deletion in exon 8, creating a stop codon that prematurely terminates translation. A single point mutation (T-A) in exon 8 of Lox2 changed histidine (H532, one of the iron-binding ligands essential for Lox2 activity) to glutamine. The mutation in the Lox3 gene in H70 was a single-point mutation in exon 6 (A-G), which changed the amino acid from histidine to arginine. This amino acid alteration in Lox3 was located in the N-terminal barrel, which might play a role in molecular recognition during catalysis and/or proteolysis. These results suggest that gene analysis based on DNA sequencing could be useful for elucidating the lipoxygenase content in soybean mutant lines. Additionally, the soybean mutant line selected in this study could be used to develop soybean cultivars with improved flavor.  相似文献   
98.
99.
The cell-free culture filtrate of Bacillus cereus associated with an entomopathogenic nematode, Rhabditis (Oscheius) sp., exhibited strong antimicrobial activity. The ethyl acetate extract of the bacterial culture filtrate was purified by silica gel column chromatography to obtain six bioactive compounds. The structure and absolute stereochemistry of these compounds were determined based on extensive spectroscopic analyses (LCMS, FABMS, 1H NMR, 13C NMR, 1H ?1H COSY, 1H ?13C HMBC) and Marfey’s method. The compounds were identified as cyclo(D-Pro-D-Leu), cyclo(L-Pro-D-Met), cyclo (L-Pro-D-Phe), cyclo (L-Pro-L-Val), 3,5-dihydroxy-4-ethyl-trans-stilbene, and 3,5-dihydroxy-4-isopropylstilbene, respectively. Compounds recorded antibacterial activity against all four tested bacteria strains of Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. 3,5-dihydroxy-4-isopropylstilbene recorded activity only against Gram-positive bacteria while cyclo(L-Pro-L-Val) recorded no antibacterial activity. Best antibacterial activity was recorded by 3,5-dihydroxy-4-ethyl-trans-stilbene (4 μg/ml) against Escherichia coli. The six compounds recorded significant antifungal activities against five fungal strains tested (Aspergillus flavus, Candida albicans, Fusarium oxysporum, Rhizoctonia solani and Penicillium expansum) and they were more effective than bavistin, the standard fungicide. The activity of cyclo(D-Pro-D-Leu), cyclo(L-Pro-D-Met), 3,5-dihydroxy-4-ethyl-trans-stilbene, and 3,5-dihydroxy-4-isopropylstilbene against Candida albicans was better than amphotericin B. To the best of our knowledge, this is the first report of antifungal activity of the bioactive compounds against the plant pathogenic fungi Fusarium oxysporum, Rhizoctonia solani, and Penicillium expansum. We conclude that the Bacillus cereus strain associated with entomopathogenic nematode is a promising source of natural bioactive secondary metabolites which may receive great benefit as potential sources of new drugs in the agricultural and pharmacological industry.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号