首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   436篇
  免费   15篇
  国内免费   9篇
  2022年   4篇
  2020年   3篇
  2019年   2篇
  2018年   4篇
  2017年   8篇
  2015年   7篇
  2014年   4篇
  2013年   10篇
  2012年   21篇
  2011年   13篇
  2010年   11篇
  2009年   20篇
  2008年   24篇
  2007年   12篇
  2006年   16篇
  2005年   8篇
  2004年   14篇
  2003年   9篇
  2002年   3篇
  2001年   7篇
  2000年   4篇
  1999年   9篇
  1998年   6篇
  1997年   6篇
  1996年   11篇
  1995年   3篇
  1994年   4篇
  1992年   2篇
  1991年   2篇
  1989年   2篇
  1983年   4篇
  1980年   3篇
  1979年   2篇
  1978年   5篇
  1974年   3篇
  1972年   2篇
  1971年   2篇
  1959年   7篇
  1958年   23篇
  1957年   26篇
  1956年   26篇
  1955年   22篇
  1954年   22篇
  1953年   13篇
  1952年   13篇
  1951年   10篇
  1950年   9篇
  1949年   2篇
  1948年   2篇
  1912年   2篇
排序方式: 共有460条查询结果,搜索用时 15 毫秒
121.
122.
123.
124.
125.
X-ray breakage experiments with endosperm. I. Sub-chromatid breakage   总被引:4,自引:0,他引:4  
  相似文献   
126.
p58/ERGIC-53 is a calcium-dependent animal lectin that acts as a cargo receptor, binding to a set of glycoproteins in the endoplasmic reticulum (ER) and transporting them to the Golgi complex. It is similar in structure to calcium-dependent leguminous lectins. We have determined the structure of the carbohydrate-recognition domain of p58/ERGIC-53 in its calcium-bound form. The structure reveals localized but large conformational changes in relation to the previously determined metal ion-free structure, mapping mostly to the ligand-binding site. It reveals the presence of two calcium ion-binding sites located 6A apart, one of which has no equivalent in the plant lectins. The second metal ion-binding site present in that class of lectins, binding Mn(2+), is absent from p58/ERGIC-53. The absence of a short loop in the ligand-binding site in this protein suggests that it has adapted to optimally bind the high-mannose Man(8)(GlcNAc)(2) glycan common to glycoproteins at the ER exit stage.  相似文献   
127.
Short-term muscle denervation is a reproducible model of tissue-specific insulin resistance. To investigate the molecular basis of insulin resistance in denervated muscle, the downstream signaling molecules of the insulin-signaling pathway were examined in intact and denervated soleus muscle of rats. Short-term denervation induced a significant fall in glucose clearance rates (62% of control, P < 0.05) as detected by euglycemic hyperinsulinemic clamp and was associated with a significant decrease in insulin-stimulated tyrosine phosphorylation of the insulin receptor (IR; 73% of control, P < 0.05), IR substrate 1 (IRS1; 69% of control, P < 0.05), and IRS2 (82% of control, P < 0.05) and serine phosphorylation of Akt (39% of control, P < 0.05). Moreover, denervation reduced insulin-induced association between IRS1/IRS2 and p85/phosphatidylinositol (PI) 3-kinase. Nevertheless, denervation caused an increase in PI 3-kinase activity associated with IRS1 (275%, P < 0.05) and IRS2 (180%, P < 0.05), but the contents of phosphorylated PI detected by HPLC were significantly reduced in lipid fractions. In the face of the apparent discrepancy, we evaluated the expression and activity of the 5-inositol, lipid phosphatase SH2 domain-containing inositol phosphatase (SHIP2), and the serine phosphorylation of p85/PI 3-kinase. No major differences in SHIP2 expression were detected between intact and denervated muscle. However, serine phosphorylation of p85/PI 3-kinase was reduced in denervated muscle, whereas the blockade of SHIP2 expression by antisense oligonucleotide treatment led to partial restoration of phosphorylated PI contents and to improved glucose uptake. Thus modulation of the functional status of SHIP2 may be a major mechanism of insulin resistance induced by denervation.  相似文献   
128.
Insulin and leptin act in the hypothalamus, providing robust anorexigenic signals. The exposure of homeothermic animals to a cold environment leads to increased feeding, accompanied by sustained low levels of insulin and leptin. In the present study, the initial and intermediate steps of the insulin-signaling cascade were evaluated in the hypothalamus of cold-exposed Wistar rats. By immunohistochemistry, most insulin receptor (IR) and insulin receptor substrate-2 (IRS-2) immunoreactivity localized to the arcuate nucleus. Basal levels of tyrosine phosphorylation of IR and IRS-2 were increased in cold-exposed rats compared with rats maintained at room temperature. However, after an acute, peripheral infusion of exogenous insulin, significantly lower increases of IR and IRS-2 tyrosine phosphorylation were detected in the hypothalamus of cold-exposed rats. Insulin-induced association of p85/phosphatidylinositol 3-kinase with IRS-2, Ser473 phosphorylation of Akt, and tyrosine phosphorylation of ERK was significantly reduced in the hypothalamus of cold-exposed rats. To test the hypothesis of functional impairment of insulin signaling in the hypothalamus, intracerebroventricularly cannulated rats were acutely treated with insulin, and food ingestion was measured over a period of 12 h. Cold-exposed animals presented a significantly lower insulin-induced reduction in food consumption compared with animals maintained at room temperature. Hence, the present studies reveal that animals exposed to cold are resistant, both at the molecular and the functional level, to the actions of insulin in the hypothalamus.  相似文献   
129.
DHEA improves insulin sensitivity and has anti-obesity effect in animal models and men. However, the molecular mechanisms by which DHEA improves insulin action have not been clearly understood. In the present study, we examined the protein levels and phosphorylation state of insulin receptor (IR), IRS-1 and IRS-2, the association between IRSs and PI3K and SHP2, the insulin-induced IRSs associated PI 3-kinase activities, and the phosphorylation status of AKT and atypical PKCzeta/lambda in the liver and the muscle of 6 month-old Wistar rats treated with DHEA. There was no change in IR, IRS-1 and IRS-2 protein levels in both tissues of treated rats analysed by immunoblotting. On the other hand, insulin-induced IRS-1 tyrosine phosphorylation was increased in both tissues while IRS-2 tyrosyl phosphorylation was increased in liver of DHEA treated group. The PI3-kinase/AKT pathway was increased in the liver and the PI3K/atypical PKCzeta/lambda pathway was increased in the muscle of DHEA treated rats. These data indicate that these regulations of early steps of insulin action may play a role in the intracellular mechanism for the improved insulin sensitivity observed in this animal model.  相似文献   
130.
Chronic leptin treatment markedly enhances the effect of insulin on hepatic glucose production unproportionally with respect to body weight loss and increased insulin sensitivity. In the present study the cross-talk between insulin and leptin was evaluated in rat liver. Upon stimulation of JAK2 tyrosine phosphorylation, leptin induced JAK2 co-immunoprecipitation with STAT3, STAT5b, IRS-1 and IRS-2. This phenomenon parallels the leptin-induced tyrosine phosphorylation of STAT3, STAT5b, IRS-1 and IRS-2. Acutely injected insulin stimulated a mild increase in tyrosine phosphorylation of JAK2, STAT3 and STAT5b. Leptin was less effective than insulin in stimulating IRS phosphorylation and their association with PI 3-kinase. Simultaneous treatment with both hormones yielded no change in maximal phosphorylation of STAT3, IRS-1, IRS-2 and Akt, but led to a marked increase in tyrosine phosphorylation of JAK2 and STAT5b when compared with isolated administration of insulin or leptin. This indicates that there is a positive cross-talk between insulin and leptin signaling pathways at the level of JAK2 and STAT5b in rat liver.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号