首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   8篇
  97篇
  2024年   1篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   4篇
  2013年   6篇
  2012年   8篇
  2011年   4篇
  2010年   5篇
  2009年   4篇
  2008年   3篇
  2007年   6篇
  2006年   6篇
  2005年   7篇
  2004年   5篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   5篇
  1998年   2篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1980年   1篇
  1977年   1篇
排序方式: 共有97条查询结果,搜索用时 15 毫秒
81.
The higher heating value (HHV) is an important property defining the energy content of biomass fuels. A number of proximate and/or ultimate analysis based predominantly linear correlations have been proposed for predicting the HHV of biomass fuels. A scrutiny of the relationships between the constituents of the proximate and ultimate analyses and the corresponding HHVs suggests that all relationships are not linear and thus nonlinear models may be more appropriate. Accordingly, a novel artificial intelligence (AI) formalism, namely genetic programming (GP) has been employed for the first time for developing two biomass HHV prediction models, respectively using the constituents of the proximate and ultimate analyses as the model inputs. The prediction and generalization performance of these models was compared rigorously with the corresponding multilayer perceptron (MLP) neural network based as also currently available high-performing linear and nonlinear HHV models. This comparison reveals that the HHV prediction performance of the GP and MLP models is consistently better than that of their existing linear and/or nonlinear counterparts. Specifically, the GP- and MLP-based models exhibit an excellent overall prediction accuracy and generalization performance with high (>0.95) magnitudes of the coefficient of correlation and low (<4.5 %) magnitudes of mean absolute percentage error in respect of the experimental and model-predicted HHVs. It is also found that the proximate analysis-based GP model has outperformed all the existing high-performing linear biomass HHV prediction models. In the case of ultimate analysis-based HHV models, the MLP model has exhibited best prediction accuracy and generalization performance when compared with the existing linear and nonlinear models. The AI-based models introduced in this paper due to their excellent performance have the potential to replace the existing biomass HHV prediction models.  相似文献   
82.
Mice carrying a targeted disruption of the Npr1 gene (coding for guanylyl cyclase/natriuretic peptide receptor A (NPRA)) exhibit increased blood pressure, cardiac hypertrophy, and congestive heart failure, similar to untreated human hypertensive patients. The objective of this study was to determine whether permanent ablation of NPRA signaling in mice alters the expression of matrix metalloproteinase (MMP)-2 and MMP-9 and pro-inflammatory mediators such as tumor necrosis factor-alpha (TNF-alpha), leading to myocardial collagen remodeling. Here, we report that expression levels of the MMP-2 and MMP-9 genes were increased by 3-5-fold and that the expression of the TNF-alpha gene was enhanced by 8-fold in Npr1 homozygous null mutant (Npr1-/-) mouse hearts compared with wild-type (Npr1+/+) control mouse hearts. Myocardial fibrosis, total collagen, and the collagen type I/III ratio (p < 0.01) were dramatically increased in adult Npr1-/- mice compared with age-matched wild-type counterparts. Hypertrophic marker genes, including the beta-myosin heavy chain and transforming growth factor-beta1, were significantly up-regulated (3-5-fold) in both young and adult Npr1-/- mouse hearts. NF-kappa B binding activity in ventricular tissues was enhanced by 4-fold with increased translocation of the p65 subunit from the cytoplasmic to nuclear fraction in Npr1-/- mice. Our results show that reduced NPRA signaling activates MMP, transforming growth factor-beta1, and TNF-alpha expression in Npr1-/- mouse hearts. The findings of this study demonstrate that disruption of NPRA/cGMP signaling promotes hypertrophic growth and extracellular matrix remodeling, leading to the development of cardiac hypertrophy, myocardial fibrosis, and congestive heart failure.  相似文献   
83.

Background

Although environmental lead exposure is associated with significant deficits in cognition, executive functions, social behaviors, and motor abilities, the neuroanatomical basis for these impairments remains poorly understood. In this study, we examined the relationship between childhood lead exposure and adult brain volume using magnetic resonance imaging (MRI). We also explored how volume changes correlate with historic neuropsychological assessments.

Methods and Findings

Volumetric analyses of whole brain MRI data revealed significant decreases in brain volume associated with childhood blood lead concentrations. Using conservative, minimum contiguous cluster size and statistical criteria (700 voxels, unadjusted p < 0.001), approximately 1.2% of the total gray matter was significantly and inversely associated with mean childhood blood lead concentration. The most affected regions included frontal gray matter, specifically the anterior cingulate cortex (ACC). Areas of lead-associated gray matter volume loss were much larger and more significant in men than women. We found that fine motor factor scores positively correlated with gray matter volume in the cerebellar hemispheres; adding blood lead concentrations as a variable to the model attenuated this correlation.

Conclusions

Childhood lead exposure is associated with region-specific reductions in adult gray matter volume. Affected regions include the portions of the prefrontal cortex and ACC responsible for executive functions, mood regulation, and decision-making. These neuroanatomical findings were more pronounced for males, suggesting that lead-related atrophic changes have a disparate impact across sexes. This analysis suggests that adverse cognitive and behavioral outcomes may be related to lead''s effect on brain development producing persistent alterations in structure. Using a simple model, we found that blood lead concentration mediates brain volume and fine motor function.  相似文献   
84.
SLC6A14, also known as ATB(0,+), is an amino acid transporter with unique characteristics. It transports 18 of the 20 proteinogenic amino acids. However, this transporter is expressed only at low levels in normal tissues. Here, we show that the transporter is up-regulated specifically in estrogen receptor (ER)-positive breast cancer, demonstrable with primary human breast cancer tissues and human breast cancer cell lines. SLC6A14 is an estrogen/ER target. The transport features of SLC6A14 include concentrative transport of leucine (an activator of mTOR), glutamine (an essential amino acid for nucleotide biosynthesis and substrate for glutaminolysis), and arginine (an essential amino acid for tumor cells), suggesting that ER-positive breast cancer cells up-regulate SLC6A14 to meet their increased demand for these amino acids. Consequently, treatment of ER-positive breast cancer cells in vitro with α-methyl-DL-tryptophan (α-MT), a selective blocker of SLC6A14, induces amino acid deprivation, inhibits mTOR, and activates autophagy. Prolongation of the treatment with α-MT causes apoptosis. Addition of an autophagy inhibitor (3-methyladenine) during α-MT treatment also induces apoptosis. These effects of α-MT are specific to ER-positive breast cancer cells, which express the transporter. The ability of α-MT to cause amino acid deprivation is significantly attenuated in MCF-7 cells, an ER-positive breast cancer cell line, when SLC6A14 is silenced with shRNA. In mouse xenograft studies, α-MT by itself is able to reduce the growth of the ER-positive ZR-75-1 breast cancer cells. These studies identify SLC6A14 as a novel and effective drug target for the treatment of ER-positive breast cancer.  相似文献   
85.
The present study is to investigate the antitumor, antioxidant and antibacterial potential of silver nanoparticles (Ag NPs) synthesized from a phenolic derivative 4-N-methyl benzoic acid, isolated from a medicinal plant (Memecylon umbellatum Burm F). The Bio-inspired nanoparticles (NPs) were analyzed by using UV–vis spectroscopy, FTIR, HRTEM, Zeta potential and XRD techniques. The UV–vis spectroscopy study at the band of 430 nm confirmed the nanoparticles formation. HRTEM report showed that the AgNPs synthesized were in the size range 7–23 nm. The harvested nanoparticles were subjected to anti-bacterial assay and a dose dependent inhibitory action was observed against the tested human pathogens. Among the tested bacteria, Acinetobacter baumannii was found to be highly sensitive to AgNPs (diameter of zone of inhibition was 31 mm). Further, the silver nanoparticles exhibited a good anti-tumor activity against the breast cancer cell line (MCF 7) with an IC50 value of 42.19 µg/mL. As the present study confirmed a good antibacterial, antioxidant and antitumor activity in the nanoparticles synthesized using 4-N-methyl benzoic acid derived from a medicinal plant, the product can be further tested to formulate a good lead compound for biomedical applications.  相似文献   
86.
The subunit S5a is a key component for the recruitment of ubiquitinated substrates to the 26S proteasome. When the full-length S5a, the N-terminal half of S5a (S5aN) containing the von Willebrand A (vWA) domain, and the C-terminal half of S5a (S5aC) containing two ubiquitin(Ub)-interacting motifs (UIMs) were ectopically expressed in HEK293 cells, Ub-conjugates accumulated most prominently in S5aC-expressing cells. In addition, S5aC induced A549 lung cancer cell death but not non-cancer BEAS-2B cell death. Similar effects were observed using only S5a-UIMs. Our data therefore suggest that S5a-UIMs can be used as upstream inhibitors of the proteasome pathway.  相似文献   
87.
The trans-activator Tat proteins coded by human immunodeficiency virus type 1 (HIV-1) and HIV-2 appear to be similar in structure and function. However, the Tat protein of HIV-2 (Tat2) activates the HIV-1 long terminal repeat (LTR) less efficiently than Tat1 (M. Emerman, M. Guyader, L. Montagnier, D. Baltimore, and M. A. Muesing, EMBO J. 6:3755-3760, 1987). To determine the functional domain of Tat2 which contributes to this incomplete reciprocity, we have carried out domain substitution between Tat1 and Tat2 by exchanging the basic domains involved in Tat interaction with its target trans-activation-response (TAR) RNA structure. Our results indicate that Tat1 proteins containing substitutions of either 8 or 14 amino acids of the basic domain of Tat2 exhibited reduced trans activation of the HIV-1 LTR by about 1/20 or one-fourth the level induced by wt Tat1. In contrast, Tat2 containing a substitution of the 9-amino-acid basic domain of Tat1 trans activated HIV-1 LTR like native Tat1. A substitution of the highly conserved core domain of Tat2 with that of Tat1 did not have any significant effect on trans activation of the HIV-1 LTR. These results indicate that the basic domain of Tat2 contributes to its inefficient trans activation of the HIV-1 LTR. Mutation of an acidic residue (Glu) located between the core domain and the Arg-rich basic domain of Tat2 at position 77 to a Gly residue increased the activity of Tat2 substantially. These results further suggest that the presence of an acidic residue (Glu) adjacent to Arg-rich sequences may at least partially contribute to the reduced activity of the Tat2 basic domain.  相似文献   
88.
Cyclophosphamide (CP), an alkylating agent widely used in cancer chemotherapy causes fatal cardiotoxicity. Lupeol, a pentacyclic triterpene, isolated from Crataeva nurvala stem bark and its ester, lupeol linoleate possess a wide range of medicinal properties. The effect of lupeol and its ester was evaluated in CP-induced myocardial toxicity in rats. Male albino rats of Wistar strain were categorized into six groups. Group I served as control. Rats in groups II, V and VI animals were injected intraperitoneally with a single dose of CP (200 mg/kg body weight) dissolved in saline. CP-treated groups V and VI received lupeol and lupeol linoleate (50 mg/kg body weight), respectively, dissolved in olive oil for 10 days by oral gavage. CP-administered rats showed a significant increase (p < 0.001) in the activities of lysosomal hydrolases in serum and heart, a decrease (p < 0.001) in the levels of cellular thiols and myofibres were swollen with loss of myofilaments in electron microscopical analysis in heart. Lupeol and its ester showed reversal of the above alterations induced by CP. These findings demonstrate that the supplementation with lupeol and its ester could preserve lysosomal integrity, improve thiol levels, highlighting their protective effect against CP-induced cardiotoxicity.  相似文献   
89.
An antibacterial metabolite was isolated from Paenibacillus polymyxa HKA-15, a soybean bacterial endophyte. The purification of the crude metabolite from Paenibacillus polymyxa HKA-15 was done by column chromatography. In TLC, a spot with an R f value of 0.86 (±0.02) from the purified fraction showed bioactivity against Xanthomonas campestris pv. phaseoli M-5. In SDS-PAGE, the purified antibiotic was separated in the molecular weight range of 3.5 kDa. The exact molecular weight of the active compound was identified as 1,347.7 Da using MS-MS analysis. Infra red spectrum and 1H NMR analysis showed the presence of amino acids and fatty acids in the active compound. The characterization of the antibacterial compound revealed its lipopeptide nature. In an agar diffusion assay, the crude metabolite showed a broad spectrum of activity, being able to inhibit the growth of the fungal pathogen, Rhizoctonia bataticola, Macrophomina phaseolina and Fusarium udum. A stronger inhibition was observed against bacterial pathogens viz., X. campestris pv.phaseoli M-5, X. campestris pv. phaseoli CP-1-1, Xanthomonas oryzae, Ralstonia solanacearum and Micrococcus luteus.  相似文献   
90.
It has been demonstrated that ubiquitin-conjugated proteins were accumulated by ectopically-expressed S5a as well as the ubiquitin-interacting motifs of S5a (S5a-UIMs). In this study, we further found that free S5a-UIMs stabilized only a subset of proteasomal substrates including p53, c-Fos, c-Jun, and p27 but not β-catenin, p15, and ornithine decarboxylase. Both S5a-UIMs and epoxomicin inhibited the proliferation of A549 lung cancer cells but arrest at the different stages of cell cycle. Together, our results suggest a potential role of S5a-UIMs as an upstream proteasomal inhibitor by blocking the subset of substrates from delivery to the 26S proteasome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号