首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   10篇
  2022年   1篇
  2021年   2篇
  2019年   5篇
  2018年   6篇
  2017年   3篇
  2016年   2篇
  2015年   4篇
  2014年   6篇
  2013年   3篇
  2012年   9篇
  2011年   9篇
  2010年   6篇
  2009年   3篇
  2008年   5篇
  2007年   2篇
  2006年   3篇
  2005年   1篇
  2004年   3篇
  2003年   7篇
  2002年   5篇
  2000年   1篇
  1999年   1篇
  1982年   1篇
  1978年   1篇
排序方式: 共有89条查询结果,搜索用时 15 毫秒
71.
In this work we present and analyse XAS measurements carried out on various portions of Prion-protein tetra-octa-repeat peptides in complexes with Cu(II) ions, both in the presence and in the absence of Zn(II). Because of the ability of the XAS technique to provide detailed local structural information, we are able to demonstrate that Zn acts by directly interacting with the peptide, in this way competing with Cu for binding with histidine. This finding suggests that metal binding competition can be important in the more general context of metal homeostasis.  相似文献   
72.
73.
Mutations in PARK2 (or parkin) are responsible for 50% of cases of autosomal‐recessive juvenile‐onset Parkinson's disease (PD). To date, 21 alternative splice variants of the human gene have been cloned. Yet most studies have focused on the full‐length protein, whereas the spectrum of the parkin isoforms expressed in PD has never been investigated. In this study, the role of parkin proteins in PD neurodegeneration was explored for the first time by analyzing their expression profile in an in vitro model of PD. To do so, undifferentiated and all‐trans‐retinoic‐acid (RA)‐differentiated SH‐SY5Y cells (which thereby acquire a PD‐like phenotype) were exposed to PD‐mimicking neurotoxins: 1‐methyl‐4‐phenylpyridinium (MPP+) and 6‐hydroxydopamine (6‐OHDA) are widely used in PD models, whereas carbonyl cyanide m‐chlorophenyl hydrazone (CCCP) and carbobenzoxy‐Leu‐Leu‐leucinal (MG132) interfere, respectively, with mitochondrial mitophagy and proteasomal degradation. Following treatment with each neurotoxin H1, the first parkin isoform to be cloned, was down‐regulated compared to the respective controls both in undifferentiated and RA‐differentiated cells. In contrast, the expression pattern of the minor splice isoforms varied as a function of the compound used: it was largely unchanged in both cell cultures (eg, H21‐H6, H12, XP isoform) or it showed virtually opposite alterations in undifferentiated and RA‐differentiated cells (eg, H20 and H3 isoform). This complex picture suggests that up‐ or down‐regulation may be a direct effect of toxin exposure, and that the different isoforms may exert different actions in neurodegeneration via modulation of different molecular pathways.  相似文献   
74.
75.
Diabetic retinopathy (DR) is a common microvascular complication of diabetes. Prolonged hyperglycemia stimulates inflammatory pathway characterized by the release of some cytokines leading to the impairment of blood retinal barrier (BRB). NAP exerts a protective effect in various eye diseases, including DR. So far, the role of NAP in the modulation of inflammatory event during early phase of this pathology has not been investigated yet. In the current study, we have studied the retinal protective effect of NAP, injected into the eye, in diabetic rats. NAP treatment exerts a dual effect downregulating interleukin (IL)-1β and its related receptors and upregulating IL-1Ra expression. We have also tested the role of this peptide in human retinal epithelial cells (ARPE19) cultured on a semipermeable support and exposed to hyperglycemic–inflammatory insult, representing a in vitro model of diabetic macular edema, a clinical manifestation of DR. The results have shown that NAP prevents outer BRB impairment by upregulating the tight junctions. In conclusion, deepened characterization of NAP action mechanism on hyperglycemic–inflammatory damage may be useful to develop a new strategy to prevent retinal damage during DR.  相似文献   
76.
77.
78.
Actin (thin) filament length regulation and stability are essential for striated muscle function. To determine the role of the actin filament pointed end capping protein, tropomodulin1 (Tmod1), with tropomyosin, we generated monoclonal antibodies (mAb17 and mAb8) against Tmod1 that specifically disrupted its interaction with tropomyosin in vitro. Microinjection of mAb17 or mAb8 into chick cardiac myocytes caused a dramatic loss of the thin filaments, as revealed by immunofluorescence deconvolution microscopy. Real-time imaging of live myocytes expressing green fluorescent protein-alpha-tropomyosin and microinjected with mAb17 revealed that the thin filaments depolymerized from their pointed ends. In a thin filament reconstitution assay, stabilization of the filaments before the addition of mAb17 prevented the loss of thin filaments. These studies indicate that the interaction of Tmod1 with tropomyosin is critical for thin filament stability. These data, together with previous studies, indicate that Tmod1 is a multifunctional protein: its actin filament capping activity prevents thin filament elongation, whereas its interaction with tropomyosin prevents thin filament depolymerization.  相似文献   
79.
Many experiments in the past have demonstrated the requirement of de novo gene expression during memory formation. In contrast to the initial reductionistic view that genes relevant to learning and memory would be easily found and would provide a simple key to understand this brain function, it is becoming apparent that the genetic contribution to memory is complex. Previous approaches have been focused on individual genes or genetic pathways and failed to address the massively parallel nature of genome activities and collective behavior of the genes that ultimately control the molecular mechanisms underlying brain function. In view of the broad variety of genes and the cross talk of genetic pathways involved in this regulation, only gene expression profiles may reflect the complete behavior of regulatory pathways. In this review we illustrate how DNA microarray-based gene expression profiling may help to dissect and analyze the complex mechanisms involved in gene regulation during the acquisition and storage of memory in the mammalian brain.  相似文献   
80.
Dynamic exchange of actin monomers at filament ends is crucial for the functional architecture of many cytoskeletal-dependent processes. Recent evidence indicates that tropomodulins (Tmods), a conserved family of actin-capping proteins that bind to the pointed (slow-growing) end of actin filaments, regulate a variety of actin structures, including dynamic actin networks found in some motile cells. Actin structures that are more stable, such as sarcomeric thin filaments, require capping by Tmods to specify filament lengths and to provide filament stability. Here, we discuss the functional differences between the capping of pointed and barbed ends within the context of these actin-filament systems, and how Tmods uniquely contribute to their regulation and organization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号