首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   3篇
  2021年   3篇
  2019年   1篇
  2018年   2篇
  2016年   4篇
  2015年   8篇
  2014年   10篇
  2013年   12篇
  2012年   7篇
  2011年   7篇
  2010年   7篇
  2009年   1篇
  2008年   3篇
  2007年   6篇
  2006年   2篇
  2005年   10篇
  2004年   4篇
  2003年   1篇
  2002年   4篇
  2001年   3篇
  1998年   1篇
  1997年   1篇
  1992年   2篇
  1981年   1篇
排序方式: 共有100条查询结果,搜索用时 31 毫秒
71.
Solanum brevidens is a wild diploid potato species possessing high levels of resistances to several major potato diseases. We previously developed fertile somatic hybrids between S. brevidens and the cultivated potato (Solanum tuberosum) in order to introgress disease resistances from this wild species into potato. A series of backcross progenies was developed from a hexaploid somatic hybrid A206. Using a combination of S. brevidens-specific randomly amplified polymorphic DNA (RAPD) markers and a sequential genomic in situ hybridization (GISH) and fluorescence in situ hybridization (FISH) technique, we identified all 12 S. brevidens chromosomes in the backcross progenies. Seven potato-S. brevidens monosomic chromosome addition lines (chromosomes 1, 3, 4, 5, 8, 9 and 10) and one monosomic substitution line (chromosome 6) were identified, and the remaining four S. brevidens chromosomes (2, 7, 11, and 12) were included in two other lines. These chromosomal addition/substitution stocks provide valuable tools for potato cytogenetic research, and can be used to introgress disease resistances from S. brevidens into potato.  相似文献   
72.
ClpB is a member of a multichaperone system in Escherichia coli (with DnaK, DnaJ, and GrpE) that reactivates aggregated proteins. The sequence of ClpB contains two ATP-binding regions that are enclosed between the N- and C-terminal extensions. Whereas it has been found that the N-terminal region of ClpB is essential for the chaperone activity, the structure of this region is not known, and its biochemical properties have not been studied. We expressed and purified the N-terminal fragment of ClpB (residues 1-147). Circular dichroism of the isolated N-terminal region showed a high content of alpha-helical structure. Differential scanning calorimetry showed that the N-terminal region of ClpB is thermodynamically stable and contains a single folding domain. The N-terminal domain is monomeric, as determined by gel-filtration chromatography, and the elution profile of the N-terminal domain does not change in the presence of the N-terminally truncated ClpB (ClpBDeltaN). This indicates that the N-terminal domain does not form strong contacts with ClpBDeltaN. Consistently, addition of the separated N-terminal domain does not reverse an inhibition of ATPase activity of ClpBDeltaN in the presence of casein. As shown by ELISA measurements, full-length ClpB and ClpBDeltaN bind protein substrates (casein, inactivated luciferase) with similar affinity. We also found that the isolated N-terminal domain of ClpB interacts with heat-inactivated luciferase. Taken together, our results indicate that the N-terminal fragment of ClpB forms a distinct domain that is not strongly associated with the ClpB core and is not required for ClpB interactions with other proteins, but may be involved in recognition of protein substrates.  相似文献   
73.
Xanthine oxidase is an important enzyme of purine metabolism that catalyzes the hydroxylation of hypoxanthine to xanthine and then xanthine to uric acid. A thermostable xanthine oxidase is being reported from a thermophilic organism RL-2d isolated from the Manikaran (Kullu) hot spring of Himachal Pradesh (India). Based on the morphology, physiological tests, and 16S rDNA gene sequence, RL-2d was identified as Bacillus pumilus. Optimization of physiochemical parameters resulted into 4.1-fold increase in the xanthine oxidase activity from 0.051 U/mg dcw (dry cell weight) to 0.209 U/mg dcw. The xanthine oxidase of B. pumilus RL-2d has exhibited very good thermostability and its t1/2 at 70 and 80 °C were 5 and 1 h, respectively. Activity of this enzyme was strongly inhibited by Hg2+, Ag+ and allopurinol. The investigation showed that B. pumilus RL-2d exhibited highest xanthine oxidase activity and remarkable thermostability among the other xanthine oxidases reported so far.  相似文献   
74.
The influence of the size distribution of phytoplankton on changes in the planktonic food web structures with eutrophication was examined using natural planktonic communities in two world-famous lakes: Lake Baikal and Lake Biwa. The size distribution of phytoplankton and the ratio of heterotrophic to autotrophic biomass (H/A ratio), indicating the balance between primary production and its consumption, were investigated in the lakes of different trophic status. The results revealed that microphytoplankton (>20μm) in mesotrophic Lake Biwa, and picophytoplankton (<2μm) or nanophytoplankton (2–20μm) in oligotrophic Lake Baikal, comprised the highest proportion of the total phytoplankton biomass. The H/A ratio was lower in Lake Biwa (<1) than in Lake Baikal (>1). The low H/A ratio in Lake Biwa appeared to be the consequence of the lack of consumption of the more abundant microphytoplankton, which were inferior competitors in nutrient uptake under oligotrophic conditions but less vulnerable to grazing. As a result, unconsumed microphytoplankton accumulated in the water column, decreasing the H/A ratio in Lake Biwa. Our results showed that food web structure and energy flow in planktonic communities were greatly influenced by the size distribution of phytoplankton, in conjunction with bottom-up (nutrient uptake) and top-down (grazing) effects at the trophic level of primary producers.  相似文献   
75.
tRNA isopentenyltransferases (Tit1) modify tRNA position 37, adjacent to the anticodon, to N6-isopentenyladenosine (i6A37) in all cells, yet the tRNA subsets selected for modification vary among species, and their relevance to phenotypes is unknown. We examined the function of i6A37 in Schizosaccharomyces pombe tit1+ and tit1-Δ cells by using a β-galactosidase codon-swap reporter whose catalytic activity is sensitive to accurate decoding of codon 503. i6A37 increased the activity of tRNACys at a cognate codon and that of tRNATyr at a near-cognate codon, suggesting that i6A37 promotes decoding activity generally and increases fidelity at cognate codons while decreasing fidelity at noncognate codons. S. pombe cells lacking tit1+ exhibit slow growth in glycerol or rapamycin. While existing data link wobble base U34 modifications to translation of functionally related mRNAs, whether this might extend to the anticodon-adjacent position 37 was unknown. Indeed, we found a biased presence of i6A37-cognate codons in high-abundance mRNAs for ribosome subunits and energy metabolism, congruent with the observed phenotypes and the idea that i6A37 promotes translational efficiency. Polysome profiles confirmed the decreased translational efficiency of mRNAs in tit1-Δ cells. Because subsets of i6A37-tRNAs differ among species, as do their cognate codon-sensitive mRNAs, these genomic variables may underlie associated phenotypic differences.  相似文献   
76.
The acyl transfer activity of the amidase of Alcaligenes sp. MTCC 10674 has been applied to the conversion of benzamide and hydroxylamine to benzohydroxamic acid. The unique features of the acyl transfer activity of this organism include its optimal activity at 50 °C and very high substrate (100 mM benzamide) and product (90 mM benzohydroxamic acid) tolerance among the hitherto reported enzymes. The bench scale production of benzohydroxamic acid was carried out in a fed-batch reaction (final volume 1 l) by adding 50 mM benzamide and 250 mM of hydroxylamine after every 20 min for 80 min in 0.1 M potassium phosphate buffer (pH 7.0) at 50 °C, using resting cells equal to 4.0 mg dcm/ml of reaction mixture. From 1 l of reaction mixture 33 g of benzohydroxamic acid was recovered with 24.6 g l?1 h?1 productivity. The acyl transfer activity of the amidase of Alcaligenes sp. MTCC 10674 and the process developed in the present study are of industrial significance for the enzyme-mediated production of benzohydroxamic acid.  相似文献   
77.
Summary Forty yeast strains were screened for nitrile-hydrolysing activity. Among them Kluyveromyces thermotolerans MGBY 37 exhibited highest nitrile-hydrolysing activity (0.030 μmol/h/mg dry cell weight). This yeast contained a two-enzyme system i.e. nitrile hydratase (NHase, EC 4.2.1.84) and amidase (EC 3.5.1.4) for the hydrolysis of nitriles/amides to corresponding acids and ammonia. However, these enzymes had more affinity for N-heterocyclic aromatic and aromatic nitriles/amides rather than unsaturated and saturated aliphatic nitriles/amides. The NHase–amidase activity was constitutively produced by K. thermotolerence MGBY 37. Addition of acetonitrile in the medium enhanced the production of this activity while other nitriles and amides lowered the production of NHase–amidase activity. This organism thus exhibited two types of amidase i.e. a constitutive amidase having affinity for N-heterocyclic aromatic, unsaturated and saturated aliphatic amides and another inducible amidase with affinity for aromatic amides. Formamide proved to be the best inducer of the latter amidase activity. This is the first report on nitrile- and amide-hydrolysing activity in Kluyveromyces.  相似文献   
78.
Ng OT  Lin L  Laeyendecker O  Quinn TC  Sun YJ  Lee CC  Leo YS 《PloS one》2011,6(1):e15738

Background

It remains controversial as to whether HIV-1 subtypes influence disease progression. Singapore offers a unique opportunity to address this issue due to the presence of co-circulating subtypes. We compared subtype CRF01_AE and non-CRF01_AE infected patients, with regards to estimated annual rate of CD4+ T-cell loss and time from estimated data of seroconversion (EDS) to antiretroviral therapy (ART).

Methods

We recruited ART-naive patients with known dates of seroconversion between October 2002 and December 2007 at the Singapore Communicable Disease Centre, the national reference treatment centre. Multilevel mixed-effects models were used to analyse the rate of CD4+ T-cell decline. Time from EDS to ART was analyzed with the Kaplan-Meier survival method and compared with Cox proportional hazards models.

Results

54 patients with previously assigned HIV-1 subtypes (24 CRF01_AE, 17 B, 8 B'', 1 CRF33_01B, 3 CRF34_01B and 1 G) were observed for 89 patient-years. Subtype CRF01_AE and non-CRF01_AE infected patients did not differ in age, gender, risk factor, rate of symptomatic seroconversion, baseline CD4+ T-cell count, log10 viral load or haemoglobin concentration. The estimated annual rate of CD4+ T-cell loss was 58 cells/mm3/year (95% CI: 7 to 109; P = 0.027) greater in subtype CRF01_AE infected patients compared to non-CRF01_AE patients, after adjusting for age, baseline CD4+ T-cell count and baseline log10 viral load. The median time from EDS to ART was 1.8 years faster comparing CRF01_AE to non-CRF01_AE infected patient with a 2.5 times (95% CI: 1.2-5.0; P = 0.013) higher hazard for ART initiation, after controlling for age, baseline CD4+ T-cell count and baseline log10 viral load.

Conclusions

Infecting subtype significantly impacted the rate of CD4+ T-cell loss and time to treatment in this cohort. Studies to understand the biological basis for this difference could further our understanding of HIV pathogenesis.  相似文献   
79.
80.
The N(6)-(isopentenyl)adenosine (i(6)A) modification of some tRNAs at position A37 is found in all kingdoms and facilitates codon-specific mRNA decoding, but occurs in different subsets of tRNAs in different species. Here we examine yeasts' tRNA isopentenyltransferases (i.e., dimethylallyltransferase, DMATase, members of the Δ(2)-isopentenylpyrophosphate transferase, IPPT superfamily) encoded by tit1(+) in Schizosaccharomyces pombe and MOD5 in Saccharomyces cerevisiae, whose homologs are Escherichia coli miaA, the human tumor suppressor TRIT1, and the Caenorhabditis elegans life-span gene product GRO-1. A major determinant of miaA activity is known to be the single-stranded tRNA sequence, A36A37A38, in a stem-loop. tRNA(Trp)(CCA) from either yeast is a Tit1p substrate, but neither is a Mod5p substrate despite the presence of A36A37A38. We show that Tit1p accommodates a broader range of substrates than Mod5p. tRNA(Trp)(CCA) is distinct from Mod5p substrates, which we sort into two classes based on the presence of G at position 34 and other elements. A single substitution of C34 to G converts tRNA(Trp)(CCA) to a Mod5p substrate in vitro and in vivo, consistent with amino acid contacts to G34 in existing Mod5p-tRNA(Cys)(GCA) crystal structures. Mutation of Mod5p in its G34 recognition loop region debilitates it differentially for its G34 (class I) substrates. Multiple alignments reveal that the G34 recognition loop sequence of Mod5p differs significantly from Tit1p, which more resembles human TRIT1 and other DMATases. We show that TRIT1 can also modify tRNA(Trp)(CCA) consistent with broad recognition similar to Tit1p. This study illustrates previously unappreciated molecular plasticity and biological diversity of the tRNA-isopentenyltransferase system of eukaryotes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号