首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1958篇
  免费   193篇
  2023年   11篇
  2022年   26篇
  2021年   59篇
  2020年   27篇
  2019年   44篇
  2018年   37篇
  2017年   42篇
  2016年   61篇
  2015年   98篇
  2014年   118篇
  2013年   121篇
  2012年   143篇
  2011年   147篇
  2010年   108篇
  2009年   93篇
  2008年   110篇
  2007年   106篇
  2006年   105篇
  2005年   89篇
  2004年   94篇
  2003年   82篇
  2002年   86篇
  2001年   43篇
  2000年   45篇
  1999年   34篇
  1998年   19篇
  1997年   21篇
  1996年   11篇
  1995年   15篇
  1994年   11篇
  1993年   9篇
  1992年   22篇
  1991年   16篇
  1990年   13篇
  1989年   7篇
  1988年   4篇
  1987年   9篇
  1986年   5篇
  1985年   7篇
  1984年   9篇
  1983年   7篇
  1981年   3篇
  1979年   5篇
  1978年   3篇
  1977年   4篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1970年   2篇
  1967年   4篇
排序方式: 共有2151条查询结果,搜索用时 31 毫秒
71.
Infection by the bacterium Listeria monocytogenes depends on host cell clathrin. To determine whether this requirement is widespread, we analyzed infection models using diverse bacteria. We demonstrated that bacteria that enter cells following binding to cellular receptors (termed "zippering" bacteria) invade in a clathrin-dependent manner. In contrast, bacteria that inject effector proteins into host cells in order to gain entry (termed "triggering" bacteria) invade in a clathrin-independent manner. Strikingly, enteropathogenic Escherichia coli (EPEC) required clathrin to form actin-rich pedestals in host cells beneath adhering bacteria, even though this pathogen remains extracellular. Furthermore, clathrin accumulation preceded the actin rearrangements necessary for Listeria entry. These data provide evidence for a clathrin-based entry pathway allowing internalization of large objects (bacteria and ligand-coated beads) and used by "zippering" bacteria as part of a general mechanism to invade host mammalian cells. We also revealed a nonendocytic role for clathrin required for extracellular EPEC infections.  相似文献   
72.
It is known that many social insects and arthropod predators and parasitoids can learn the association between a resource and volatile cues. Although there are various studies on the effect of experience in immature arthropods on behavior later in adult life, not much is known about the effects of such experiences on immature behavior. This was investigated here in the lacewing Ceraeochrysa cubana (Hagen) (Neuroptera: Chrysopidae). Whereas adults of this lacewing feed on plant‐provided food and honeydew, larvae are voracious polyphagous predators of several insect pests, and therefore important for biological control. Hence, studying the foraging behavior and the effects of learning in immatures of this species is important. We exposed immatures to the volatile methyl salicylate (MeSA), which was either associated with food or with the absence of food. Subsequently, their response to this volatile was tested in an olfactometer. Immatures that had experienced the association of MeSA with food were attracted to it and immatures that were exposed to MeSA during food deprivation were repelled. Subsequently, predator immatures that had experienced the association between MeSA and food were released on a plant without food and were found to use this volatile in locating patches with food. In contrast, larvae without such experience were found equally on food patches with and without the volatile. We conclude that these immature predators are capable of learning the association between volatiles and food, or the absence of food, and use this during foraging.  相似文献   
73.
Several molecules extracted from natural products exhibit different biological activities, such as ion channel modulation, activation of signaling pathways, and anti-inflammatory or antitumor activity. In this study, we tested the antitumor ability of natural compounds extracted from the Raputia praetermissa plant. Among the compounds tested, an alkaloid, here called compound S4 (4-Deoxyraputindole C), showed antitumor effects against human tumor lineages. Compound S4 was the most active against Raji, a lymphoma lineage, promoting cell death with characteristics that including membrane permeabilization, dissipation of the mitochondrial potential, increased superoxide production, and lysosomal membrane permeabilization. The use of cell death inhibitors such as Z-VAD-FMK (caspase inhibitor), necrostatin-1 (receptor-interacting serine/threonine-protein kinase 1 inhibitor), E-64 (cysteine peptidases inhibitor), and N-acetyl- L -cysteine (antioxidant) did not decrease compound S4-dependent cell death. Additionally, we tested the effect of cellular activity on adherent human tumor cells. The highest reduction of cellular activity was observed in A549 cells, a lung carcinoma lineage. In this lineage, the effect on the reduction of the cellular activity was due to cell cycle arrest, without plasma membrane permeabilization, loss of the mitochondrial potential or lysosomal membrane permeabilization. Compound S4 was able to inhibit cathepsin B and L by a nonlinear competitive (negative co-operativity) and simple-linear competitive inhibitions, respectively. The potency of inhibition was higher against cathepsin L. Compound S4 promoted cell cycle arrest at G 0 and G 2 phase, and increase the expression of p16 and p21 proteins. In conclusion, compound S4 is an interesting molecule against cancer, promoting cell death in the human lymphoma lineage Raji and cell cycle arrest in the human lung carcinoma lineage A549.  相似文献   
74.
 Previous studies have defined two different peptide binding motifs specific for HLA-A * 0101. These motifs are characterized by the presence of tyrosine (Y) at the C-termini of 9-mer and 10-mer peptides, and either a small polar or hydrophobic (S, T, M) residue in position 2, or a negatively charged (D or E) residue in position 3. In this study, the structural requirements for peptide binding to A * 0101 have been further analyzed by examining the binding capacity of large sets of peptides corresponding to naturally occurring sequences which bore one or the other of these two A * 0101-specific motifs. By correlating the presence of specific residue types at each position along the peptide sequence with increased (or decreased) binding affinity, the prominent influence of secondary anchor residues was revealed. In most cases, the two anchors in positions 2 and 3 appear to act synergistically. With the exception of the DE3 submotif in 9-mer peptides, a positive role for aromatic residues in position 1 and the center of the peptide (positions 4 or 5 of 9- or 10-mer peptides, respectively), and proline at C-3, were also consistently detected. However, secondary anchor residues also appear to differ significantly between the two different submotifs, demonstrating that A * 0101 can utilize alternative modes in binding its peptide ligands. According to these analyses, specific refined submotifs were also established, and their merit verified by independent sets of potential A * 0101 binding peptides. Besides providing useful insight into the nature of the interaction of the A * 0101 allele with its peptide ligands, such refined motifs should also facilitate accurate prediction of potential A * 0101-restricted peptide epitopes. Received: 16 July 1996 / Revised: 18 September 1996  相似文献   
75.
To identify new effectors of IgE receptor (FcepsilonRI) signaling, we purified proteins from FcepsilonRI-stimulated RBL-2H3 rat mast cells on anti-phosphotyrosine beads and generated mouse monoclonal antibodies (mAb) against these proteins. Two mAbs bound to a protein that was identified as a new isoform of phospholipid scramblase (PLSCR) after screening an RBL-2H3 cDNA expression library. This isoform differed from PLSCR1 by the absence of an exon 3-encoded sequence and by an insert coding six QGPY(P/A)GP repeats. The PLSCR family of proteins is responsible for a redistribution of phospholipids across the plasma membrane. Although rat PLSCR is a 37-kDa protein, anti-phosphotyrosine immunoblots revealed the presence of 37-49 kDa phosphoproteins in the material immunoprecipitated with either anti-PLSCR mAb but not with unrelated monoclonal or polyclonal antibodies. Depletion of PLSCR resulted in the absence of these phosphoproteins. Additional experiments led to the identification of these phosphoproteins as phospho-PLSCR itself. Stimulation of RBL-2H3 cells upon FcepsilonRI engagement resulted in a dramatic increase in PLSCR tyrosine phosphorylation. A comparison of the relative amounts of phospho-PLSCR and nonphosphorylated PLSCR demonstrated that only a tiny fraction was thus modified, indicating a finely targeted involvement of PLSCR in FcepsilonRI signaling. Thus, this study reports the cloning of a new isoform of PLSCR, as well as the first observation that a member of the PLSCR family is a target for tyrosine kinases and is involved in signaling by an immune receptor. These findings open new perspectives on the role of phospholipid scramblases and to the mechanisms involved in their regulation.  相似文献   
76.
The two domains of the hairpin ribozyme-substrate complex, usually depicted as straight structural elements, must interact with one another in order to form an active conformation. Little is known about the internal geometry of the individual domains in an active docked complex. Using various crosslinking and structural approaches in conjunction with molecular modeling (constraint-satisfaction program MC-SYM), we have investigated the conformation of the substrate-binding domain in the context of the active docked ribozyme-substrate complex. The model generated by MC-SYM showed that the domain is not straight but adopts a bent conformation (D-shaped) in the docked state of the ribozyme, indicating that the two helices bounding the internal loop are closer than was previously assumed. This arrangement rationalizes the observed ability of hairpin ribozymes with a circularized substrate-binding strand to cleave a circular substrate, and provides essential information concerning the organization of the substrate in the active conformation. The internal geometry of the substrate-binding strand places G8 of the substrate-binding strand near the cleavage site, which has allowed us to predict the crucial role played by this nucleotide in the reaction chemistry.  相似文献   
77.
The vaccinia virus (VV) A10L gene codes for a major core protein, P4a. This polypeptide is synthesized at late times during viral infection and is proteolytically cleaved during virion assembly. To investigate the role of P4a in the virus life cycle and morphogenesis, we have generated an inducer-dependent conditional mutant (VVindA10L) in which expression of the A10L gene is under the control of the Escherichia coli lacI operator/repressor system. Repression of the A10L gene severely impairs virus growth, as observed by both the inability of the virus to form plaques and the 2-log reduction of viral yields. This defect can be partially overcome by addition of the inducer isopropyl-beta-D-thiogalactopyranoside (IPTG). Synthesis of viral proteins other than P4a occurred, although early shutoff of host protein synthesis and expression of viral late polypeptides are clearly delayed, both in the absence and in the presence of IPTG, compared with cells infected with the parental virus. Viral DNA replication and concatemer resolution appeared to proceed normally in the absence of the A10L gene product. In cells infected with VVindA10L in the absence of the inducer virion assembly is blocked, as defined by electron microscopy. Numerous spherical immature viral particles that appear devoid of dense viroplasmic material together with highly electron-dense regular structures are abundant in VVindA10L-infected cells. These regularly spaced structures can be specifically labeled with anti-DNA antibodies as well as with a DNase-gold conjugate, indicating that they contain DNA. Some images suggest that these DNA structures enter into spherical immature viral particles. In this regard, although it has not been firmly established, it has been suggested that DNA uptake occurs after formation of spherical immature particles. Overall, our results showed that P4a and/or its cleaved products are essential for the correct assembly of the nucleoprotein complex within immature viral particles.  相似文献   
78.
Four types of tanycytes can be distinguished in the rat hypothalamus: 1 and 2 tanycytes establish an anatomical link between the ventricular cerebrospinal fluid (CSF) and the arcuate nucleus, whereas 1 and 2 tanycytes establish a link between CSF and portal blood. Endocytosis and transcytosis in these cells have been investigated by (1) immunocytochemistry with antibodies against molecular markers of the endocytotic and transcytotic pathways; (2) the administration of wheat germ agglutinin (WGA) into the ventricular or subarachnoidal CSF and following its internalisation by and its routing through tanycytes. The four populations of tanycytes show marked differences concerning the expression and subcellular location of proteins involved in endocytosis and transcytosis, such as clathrin, caveolin-1, Rab4 and ARF6. Thus, 1,2 tanycytes express caveolin-1 at the ventricular cell pole and at their terminals contacting the portal capillaries, whereas 1,2 tanycytes do not, suggesting that caveolae-dependant endocytosis does not occur in the latter and that, in 1,2 tanycytes, it may occur at both cell poles. In 1,2 tanycytes, clathrin is only expressed at the ventricular cell pole indicating that clathrin-dependant endocytosis operates for compounds present in the ventricular CSF and not for those exposed to the terminals. This agrees with the property of 1,2 tanycytes of internalising WGA through the ventricular cell pole but not through the terminals. The subcellular distribution in 1,2 tanycytes of WGA and of the proteins clathrin and Rab4 indicates that part of the internalised WGA follows the degradative pathway and part is sorted to a transcytotic pathway and that the transcytotic and the secretory pathways might intersect. Financial support was provided by grants 01/1050, from FIS, Spain (to J.L.B.) and 1030265, from FONDECYT, Chile (to E.M.R.)  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号