首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7326篇
  免费   520篇
  2024年   4篇
  2023年   39篇
  2022年   106篇
  2021年   197篇
  2020年   109篇
  2019年   146篇
  2018年   203篇
  2017年   190篇
  2016年   278篇
  2015年   390篇
  2014年   452篇
  2013年   560篇
  2012年   726篇
  2011年   677篇
  2010年   399篇
  2009年   365篇
  2008年   481篇
  2007年   444篇
  2006年   393篇
  2005年   371篇
  2004年   305篇
  2003年   276篇
  2002年   241篇
  2001年   41篇
  2000年   43篇
  1999年   54篇
  1998年   50篇
  1997年   35篇
  1996年   31篇
  1995年   33篇
  1994年   24篇
  1993年   21篇
  1992年   21篇
  1991年   17篇
  1990年   14篇
  1989年   13篇
  1988年   6篇
  1987年   6篇
  1986年   7篇
  1985年   4篇
  1984年   18篇
  1983年   9篇
  1982年   5篇
  1981年   9篇
  1980年   8篇
  1979年   8篇
  1978年   4篇
  1977年   5篇
  1976年   2篇
  1973年   3篇
排序方式: 共有7846条查询结果,搜索用时 17 毫秒
181.
182.
Growth hormone (GH) transgenic fish are at a critical step for possible approval for commercialization. Since this hormone is related to salinity tolerance in fish, our main goal was to verify whether the osmoregulatory capacity of the stenohaline zebrafish (Danio rerio) would be modified by GH-transgenesis. For this, we transferred GH-transgenic zebrafish (T) from freshwater to 11 ppt salinity and analyzed survival as well as relative changes in gene expression. Results show an increased mortality in T versus non-transgenic (NT) fish, suggesting an impaired mechanism of osmotic acclimation in T. The salinity effect on expression of genes related to osmoregulation, the somatotropic axis and energy metabolism was evaluated in gills and liver of T and NT. Genes coding for Na+, K+-ATPase, H+-ATPase, plasma carbonic anhydrase and cytosolic carbonic anhydrase were up-regulated in gills of transgenics in freshwater. The growth hormone receptor gene was down-regulated in gills and liver of both NT and T exposed to 11 ppt salinity, while insulin-like growth factor-1 was down-regulated in liver of NT and in gills of T exposed to 11 ppt salinity. In transgenics, all osmoregulation-related genes and the citrate synthase gene were down-regulated in gills of fish exposed to 11 ppt salinity, while lactate dehydrogenase expression was up-regulated in liver. Na+, K+-ATPase activity was higher in gills of T exposed to 11 ppt salinity as well as the whole body content of Na+. Increased ATP content was observed in gills of both NT and T exposed to 11 ppt salinity, being statistically higher in T than NT. Taking altogether, these findings support the hypothesis that GH-transgenesis increases Na+ import capacity and energetic demand, promoting an unfavorable osmotic and energetic physiological status and making this transgenic fish intolerant of hyperosmotic environments.  相似文献   
183.
Reaction of cyanuryl fluoride with sulfanilamide or 4-aminoethylbenzenesulfonamide afforded triazinyl-substituted benzenesulfonamides incorporating fluorine, which were further derivatized by reaction with amines, amino alcohols, amino acids or amino acid esters. Inhibition studies of all the human (h) carbonic anhydrase (CA, EC 4.2.1.1) isoforms, hCA I–XIV with these compounds revealed that they show moderate-weak inhibition of hCA III, IV, VA and XIII, rather moderate inhibition against hCA I, VI, and IX, and excellent inhibition of the physiologically relevant hCA II, VII and XII. The inhibition profile of these fluorine containing triazinyl sulfonamides is thus very different from the corresponding analogs incorporating chlorine, which were previously investigated as inhibitors of some of these enzymes.  相似文献   
184.
A convenient synthetic route and the characterization of complexes trans-[PtCl2(L)(PPh3)] (L = Et2NH (2), (PhCH2)2NH (3), (HOCH2CH2)2NH) (4) are reported. The antiproliferative activity was evaluated on three human tumor cell lines. The investigation on the mechanism of action highlighted for the most active complex 4 the capacity to affect mitochondrial functions. In particular, both the induction of the mitochondrial permeability transition phenomenon and an aspecific membrane damage occurred, depending on concentration.  相似文献   
185.
The mosquito Aedes aegypti is the vector agent responsible for the transmission of yellow fever and dengue fever viruses to over 80 million people in tropical and subtropical regions of the world. Exhaustive efforts have lead to a vaccine candidate with only 30% effectiveness against the dengue virus and failure to protect patients against the serotype 2. Hence, vector control remains the most viable route to dengue fever control programs. We have synthesized a class of 1,2,4-oxadiazole derivatives whose most biologically active compounds exhibit potent activity against Aedes aegypti larvae (ca. of 15 ppm) and low toxicity in mammals. Exposure to these larvicides results in larvae pigmentation in a manner correlated with the LC50 measurements. Structural comparisons of the 1,2,4-oxadiazole nucleus against known inhibitors of insect enzymes allowed the identification of 3-hydroxykynurenine transaminase as a potential target for these synthetic larvicides. Molecular docking calculations indicate that 1,2,4-oxadiazole compounds can bind to 3-hydroxykynurenine transaminase with similar conformation and binding energies as its crystallographic inhibitor 4-(2-aminophenyl)-4-oxobutanoic acid.  相似文献   
186.
A series of novel sulfamides incorporating the dopamine scaffold were synthesized. Reaction of amines and tert-butyl-alcohol/benzyl alcohol in the presence of chlorosulfonyl isocyanate (CSI) afforded sulfamoyl carbamates, which were converted to the title compounds by treatment with trifluoroacetic acid or by palladium-catalyzed hydrogenolysis. Inhibition of six α-carbonic anhydrases (CAs, EC 4.2.1.1), that is, CA I, CA II, CA VA, CA IX, CA XII and CA XIV, and two β-CAs from Candida glabrata (CgCA) and Mycobacterium tuberculosis (Rv3588) with these sulfamides was investigated. All CA isozymes were inhibited in the low micromolar to nanomolar range by the dopamine sulfamide analogues. Kis were in the range of 0.061–1.822 μM for CA I, 1.47–2.94 nM for CA II, 2.25–3.34 μM for CA VA, 0.041–0.37 μM for CA IX, 0.021–1.52 μM for CA XII, 0.007–0.219 μM for CA XIV, 0.35–5.31 μM for CgCA and 0.465–4.29 μM for Rv3588. The synthesized sulfamides may lead to inhibitors targeting medicinally relevant CA isoforms with potential applications as antiepileptic, antiobesity antitumor agents or anti-infective.  相似文献   
187.
The structural and dynamic properties of the oxoglutarate carrier were investigated by introducing a single tryptophan in the Trp-devoid carrier in position 184, 190 or 199 and by monitoring the fluorescence spectra in the presence and absence of the substrate oxoglutarate. In the absence of substrate, the emission maxima of Arg190Trp, Cys184Trp and Leu199Trp are centered at 342, 345 and 348 nm, respectively, indicating that these residues have an increasing degree of solvent exposure. The emission intensity of the Arg190Trp and Cys184Trp mutants is higher than that of Leu199Trp. Addition of substrate increases the emission intensity of Leu199Trp, but not that of Cys184Trp and Arg190Trp. A 3D model of the oxoglutarate carrier was built using the structure of the ADP/ATP carrier as a template and was validated with the experimental results available in the literature. The model identifies Lys122 as the most likely candidate for the quenching of Trp199. Consistently, the double mutant Lys122Ala-Leu199Trp exhibits a higher emission intensity than Leu199Trp and does not display further fluorescence enhancement in response to substrate addition. Substitution of Lys122 with Cys and evaluation of its reactivity with a sulphydryl reagent in the presence and absence of substrate confirms that residue 122 is masked by the substrate, likely through a substrate-induced conformational change.  相似文献   
188.
189.
It is generally accepted that the catalytic cycles of superoxide reductases (SORs) and cytochromes P450 involve a ferric hydroperoxo intermediate at a mononuclear iron center with a coordination sphere consisting of four equatorial nitrogen ligands and one axial cysteine thiolate trans to the hydroperoxide. However, although SORs and P450s have similar intermediates, SORs selectively cleave the Fe–O bond and liberate peroxide, whereas P450s cleave the O–O bond to yield a high-valent iron center. This difference has attracted the interest of researchers, and is further explored here. Meta hybrid DFT (M06-2X) results for the reactivity of the putative peroxo/hydroperoxo reaction intermediates in the catalytic cycle of SORs were found to indicate a high-spin preference in all cases. An exploration of the energy profiles for Fe–O and O–O bond cleavage in all spin states in both ferric and ferrous models revealed that Fe–O bond cleavage always occurs more easily than O–O bond cleavage. While O–O bond cleavage appears to be thermodynamically and kinetically unfeasible in ferric hydrogen peroxide complexes, it could occur as a minor (significantly disfavored) side reaction in the interaction of ferrous SOR with hydrogen peroxide.  相似文献   
190.
A critical role for mitochondrial dysfunction has been proposed in the pathogenesis of Down's syndrome (DS), a human multifactorial disorder caused by trisomy of chromosome 21, associated with mental retardation and early neurodegeneration. Previous studies from our group demonstrated in DS cells a decreased capacity of the mitochondrial ATP production system and overproduction of reactive oxygen species (ROS) in mitochondria. In this study we have tested the potential of epigallocatechin-3-gallate (EGCG) – a natural polyphenol component of green tea – to counteract the mitochondrial energy deficit found in DS cells. We found that EGCG, incubated with cultured lymphoblasts and fibroblasts from DS subjects, rescued mitochondrial complex I and ATP synthase catalytic activities, restored oxidative phosphorylation efficiency and counteracted oxidative stress. These effects were associated with EGCG-induced promotion of PKA activity, related to increased cellular levels of cAMP and PKA-dependent phosphorylation of the NDUFS4 subunit of complex I. In addition, EGCG strongly promoted mitochondrial biogenesis in DS cells, as associated with increase in Sirt1-dependent PGC-1α deacetylation, NRF-1 and T-FAM protein levels and mitochondrial DNA content.In conclusion, this study shows that EGCG is a promoting effector of oxidative phosphorylation and mitochondrial biogenesis in DS cells, acting through modulation of the cAMP/PKA- and sirtuin-dependent pathways. EGCG treatment promises thus to be a therapeutic approach to counteract mitochondrial energy deficit and oxidative stress in DS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号