首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   336篇
  免费   26篇
  2023年   3篇
  2022年   3篇
  2021年   5篇
  2020年   4篇
  2019年   14篇
  2018年   9篇
  2017年   12篇
  2016年   12篇
  2015年   5篇
  2014年   19篇
  2013年   20篇
  2012年   18篇
  2011年   30篇
  2010年   15篇
  2009年   16篇
  2008年   27篇
  2007年   21篇
  2006年   19篇
  2005年   20篇
  2004年   12篇
  2003年   12篇
  2002年   9篇
  2001年   8篇
  2000年   9篇
  1999年   7篇
  1998年   2篇
  1997年   4篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   5篇
  1990年   1篇
  1988年   1篇
  1984年   5篇
  1983年   2篇
  1981年   1篇
  1979年   2篇
  1977年   1篇
  1976年   1篇
排序方式: 共有362条查询结果,搜索用时 78 毫秒
61.
Weight–length relationships (WLRs) are presented for 54 species sampled by several types of fishing gear between February 2004 and May 2007, in the Arade estuary (southern Portugal). WLRs for six species are presented for the first time.  相似文献   
62.
Mammalian cells contain a pool of iron that is not strongly bound to proteins, which can be detected with fluorescent chelating probes. The cellular ligands of this biologically important “chelatable”, “labile” or “transit” iron are not known. Proposed ligands are problematic, because they are saturated by magnesium under cellular conditions and/or because they are not “safe”, i.e. they allow iron to catalyse hydroxyl radical formation. Among small cellular molecules, certain inositol phosphates (InsPs) excel at complexing Fe3+ in such a “safe” manner in vitro. However, we previously calculated that the most abundant InsP, inositol hexakisphosphate, cannot interact with Fe3+ in the presence of cellular concentrations of Mg2+. In this work, we study the metal complexation behaviour of inositol 1,2,3-trisphosphate [Ins(1,2,3)P 3], a cellular constituent of unknown function and the simplest InsP to display high-affinity, “safe”, iron complexation. We report thermodynamic constants for the interaction of Ins(1,2,3)P 3 with Na+, K+, Mg2+, Ca2+, Cu2+, Fe2+ and Fe3+. Our calculations indicate that Ins(1,2,3)P 3 can be expected to complex all available Fe3+ in a quantitative, 1:1 reaction, both in cytosol/nucleus and in acidic compartments, in which an important labile iron subpool is thought to exist. In addition, we calculate that the fluorescent iron probe calcein would strip Fe3+ from Ins(1,2,3)P 3 under cellular conditions, and hence labile iron detected using this probe may include iron bound to Ins(1,2,3)P 3. Therefore Ins(1,2,3)P 3 is the first viable proposal for a transit iron ligand. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
63.
Candida albicans is a major cause of oropharyngeal, vulvovaginal and haematogenously disseminated candidiasis. Endocytosis of C. albicans hyphae by host cells is a prerequisite for tissue invasion. This internalization involves interactions between the fungal invasin Als3 and host E- or N-cadherin. Als3 shares some structural similarity with InlA, a major invasion protein of the bacterium Listeria monocytogenes . InlA mediates entry of L. monocytogenes into host cells through binding to E-cadherin. A role in internalization, for a non-classical stimulation of the clathrin-dependent endocytosis machinery, was recently highlighted. Based on the similarities between the C. albicans and L. monocytogenes invasion proteins, we studied the role of clathrin in the internalization of C. albicans . Using live-cell imaging and indirect immunofluorescence of epithelial cells infected with C. albicans , we observed that host E-cadherin, clathrin, dynamin and cortactin accumulated at sites of C. albicans internalization. Similarly, in endothelial cells, host N-cadherin, clathrin and cortactin accumulated at sites of fungal endocytosis. Furthermore, clathrin, dynamin or cortactin depletion strongly inhibited C. albicans internalization by epithelial cells. Finally, beads coated with Als3 were internalized in a clathrin-dependent manner. These data indicate that C. albicans , like L. monocytogenes, hijacks the clathrin-dependent endocytic machinery to invade host cells.  相似文献   
64.
Fertilization is a calcium-dependent process that involves sequential cell–cell adhesion events of spermatozoa with oviduct epithelial cells (OECs) and with cumulus-oocyte complexes (COCs). Epithelial cadherin (E-cadherin) participates in calcium-dependent somatic cell adhesion; the adaptor protein β-catenin binds to the E-cadherin cytoplasmic domain and links the adhesion protein to the cytoskeleton. The study was conducted to immunodetect E-cadherin and β-catenin in bovine gametes and oviduct (tissue sections and OEC monolayers), and to assess E-cadherin participation in fertilization-related events. Epithelial cadherin was found in spermatozoa, oocytes, cumulus cells, and OEC. In acrosome-intact noncapacitated spermatozoa, E-cadherin was mainly localized in the apical ridge and acrosomal cap (E1-pattern; 84 ± 9%; mean ± standard deviation of the mean). After sperm treatment with heparin to promote capacitation, the percentage of cells with E1-pattern (56 ± 12%) significantly decreased; concomitantly, the percentage of spermatozoa depicting an E-cadherin staining pattern similar to E1-pattern but showing a signal loss in the acrosomal cap (E2-pattern: 40 ± 11%) increased. After l-α-lysophosphatidylcholine–induced acrosome reaction, E-cadherin signal was mainly localized in the inner acrosomal membrane (E3-pattern: 67 ± 22%). In IVM COC, E-cadherin was immunodetected in the plasma membrane of cumulus cells and oocytes, but was absent in the polar body. The 120 KDa mature protein form was found in protein extracts from spermatozoa, oocytes, cumulus cells, and OEC. β-Catenin distribution followed E-cadherin's in all cells evaluated. Epithelial cadherin participation in cell–cell interaction was evaluated using specific blocking monoclonal antibody DECMA-1. Sperm incubation with DECMA-1 impaired sperm–OEC binding (the number of sperm bound to OEC: DECMA-1 = 6.7 ± 6.1 vs. control = 29.6 ± 20.1; P < 0.001), fertilization with COC (% fertilized COC: DECMA-1 = 68.8 ± 10.4 vs. control = 90.7 ± 3.1; P < 0.05) or denuded oocytes (% fertilized oocytes: DECMA-1 = 57.0 ± 15.2 vs. control = 89.2 ± 9.8; P < 0.05) and binding to the oolemma (the number of sperm bound to oolemma: DECMA-1 = 2.2 ± 1.1 vs. control = 11.1 ± 4.8; P < 0.05). This study describes, for the first time, the presence of E-cadherin in bovine spermatozoa, COC, and OEC, and shows evidence of its participation in sperm interaction with the oviduct and the oocyte during fertilization.  相似文献   
65.
Phospholipases D (PLDs) are principally responsible for the local and systemic effects of Loxosceles envenomation including dermonecrosis and hemolysis. Despite their clinical relevance in loxoscelism, to date, only the SMase I from Loxosceles laeta, a class I member, has been structurally characterized. The crystal structure of a class II member from Loxosceles intermedia venom has been determined at 1.7 Å resolution. Structural comparison to the class I member showed that the presence of an additional disulphide bridge which links the catalytic loop to the flexible loop significantly changes the volume and shape of the catalytic cleft. An examination of the crystal structures of PLD homologues in the presence of low molecular weight compounds at their active sites suggests the existence of a ligand-dependent rotamer conformation of the highly conserved residue Trp230 (equivalent to Trp192 in the glycerophosphodiester phosphodiesterase from Thermus thermophofilus, PDB code: 1VD6) indicating its role in substrate binding in both enzymes. Sequence and structural analyses suggest that the reduced sphingomyelinase activity observed in some class IIb PLDs is probably due to point mutations which lead to a different substrate preference.  相似文献   
66.
Erythropoietin (EPO) is a glycoprotein that stimulates erythropoiesis and is clinically used for treating anemia during chronic renal failure and for anemia in preterm infants. EPO formulations usually have elevated rates of contamination due to aluminum (Al), which is toxic to both types of patients. Size-exclusion chromatography (SEC) coupled with graphite furnace atomic absorption spectrometry (GF AAS) was employed to separate proteins and to quantify the amount of aluminum present in the elution volume corresponding to EPO and, therefore, to evaluate possible binding. Because EPO formulations contain human serum albumin (HSA), a chromatographic method was optimized for the separation of these proteins. Subsequent to the chromatographic separation, 1-mL fractions of the column effluent were collected, and the Al content in these aliquots was measured by GF AAS. EPO and HSA samples were incubated with Al for 4 h at 4 °C and 37 °C as well as for 16 h at 4 °C and 37 °C. Afterwards, they were injected into the chromatographic system. These samples were also submitted to ultrafiltration (10 and 50 kDa membranes), and Al was measured in the ultrafiltrates. The results showed that Al was present in the eluent volume corresponding to the EPO peak but not in the HSA peak in the chromatograms. Temperature strengthened the interaction because the Al present in the EPO fraction was 3 times higher at 37 °C compared to 4 °C. Thirty-eight percent of the Al present in a 2.4 μg/mL EPO standard solution, and approximately 50% of the Al in formulation samples containing approximately 11 μg/mL EPO and either citrate or phosphate, were non-ultrafiltrable, which suggests that EPO is an effective Al acceptor in vitro.  相似文献   
67.
The polymerization of peptidoglycan is the result of two types of enzymatic activities: transglycosylation, the formation of linear glycan chains, and transpeptidation, the formation of peptide cross-bridges between the glycan strands. Staphylococcus aureus has four penicillin binding proteins (PBP1 to PBP4) with transpeptidation activity, one of which, PBP2, is a bifunctional enzyme that is also capable of catalyzing transglycosylation reactions. Additionally, two monofunctional transglycosylases have been reported in S. aureus: MGT, which has been shown to have in vitro transglycosylase activity, and a second putative transglycosylase, SgtA, identified only by sequence analysis. We have now shown that purified SgtA has in vitro transglycosylase activity and that both MGT and SgtA are not essential in S. aureus. However, in the absence of PBP2 transglycosylase activity, MGT but not SgtA becomes essential for cell viability. This indicates that S. aureus cells require one transglycosylase for survival, either PBP2 or MGT, both of which can act as the sole synthetic transglycosylase for cell wall synthesis. We have also shown that both MGT and SgtA interact with PBP2 and other enzymes involved in cell wall synthesis in a bacterial two-hybrid assay, suggesting that these enzymes may work in collaboration as part of a larger, as-yet-uncharacterized cell wall-synthetic complex.  相似文献   
68.
Many active principles produced by animals, plants and microorganisms have been employed in the development of new drugs for the treatment of human diseases. Among animals known to produce pharmacologically active molecules that interfere in human cell physiology, the caterpillar Lonomia obliqua has become the focus of toxicological studies due to recent findings about its venom constituents. The objective of this study was to investigate the effects of L. obliqua venom upon the viability and the proliferation of different cell lineages and to propose mechanisms for the herein observed induction of cell proliferation in glioma cell lines. MTT analyses indicate that L. obliqua venom increases the viability of tumor cell lines U138-MG and HT-29; on the other hand, it inhibits the viability of V-79 nontumor cells. Cell count based on the trypan blue exclusion method suggests a proliferating activity of the venom upon U138-MG cells. Exposure of U138-MG to crude venom extract led to a decrease in the production of nitric oxide, and activation of the cAMP signaling pathway inhibited the effects of the venom, indicating that these mechanisms may influence cell proliferation triggered by the venom. Despite the proliferative effects of crude venom on U138-MG and HT-29 cell cultures, a protein purified from L. obliqua hemolymph previously shown to have cytoprotective activity had no effect on U138-MG and HT-29; however, this same protein increased the viability of V-79 cells that had previously been exposed to the cytotoxic activity of the crude venom extract. This study indicates that the venom and the antiapoptotic protein act differently and have different effects on cell cultures, depending on the cell line analyzed. Biomolecules displaying either mitogenic or cytotoxic activities are of great biotechnological interest. Further studies encompassing the purification of active principles from L. obliqua venom are necessary to further elucidate its effects on different cell types.  相似文献   
69.
Recent studies demonstrated that the Golgi reassembly stacking proteins (GRASPs), especially GRASP55, regulate Golgi-independent unconventional secretion of certain cytosolic and transmembrane cargoes; however, the underlying mechanism remains unknown. Here, we surveyed several neurodegenerative disease–related proteins, including mutant huntingtin (Htt-Q74), superoxide dismutase 1 (SOD1), tau, and TAR DNA–binding protein 43 (TDP-43), for unconventional secretion; our results show that Htt-Q74 is most robustly secreted in a GRASP55-dependent manner. Using Htt-Q74 as a model system, we demonstrate that unconventional secretion of Htt is GRASP55 and autophagy dependent and is enhanced under stress conditions such as starvation and endoplasmic reticulum stress. Mechanistically, we show that GRASP55 facilitates Htt secretion by tethering autophagosomes to lysosomes to promote autophagosome maturation and subsequent lysosome secretion and by stabilizing p23/TMED10, a channel for translocation of cytoplasmic proteins into the lumen of the endoplasmic reticulum–Golgi intermediate compartment. Moreover, we found that GRASP55 levels are upregulated by various stresses to facilitate unconventional secretion, whereas inhibition of Htt-Q74 secretion by GRASP55 KO enhances Htt aggregation and toxicity. Finally, comprehensive secretomic analysis identified novel cytosolic cargoes secreted by the same unconventional pathway, including transgelin (TAGLN), multifunctional protein ADE2 (PAICS), and peroxiredoxin-1 (PRDX1). In conclusion, this study defines the pathway of GRASP55-mediated unconventional protein secretion and provides important insights into the progression of Huntington’s disease.  相似文献   
70.
Methanobacterium formicicum and Methanosarcina mazeii are two prevalent species isolated from an anaerobic granular consortium grown on a fatty acid mixture. The extracellular polysaccharides (EPS) were extracted from Methanobacterium formicicum and Methanosarcina mazeii and from the methanogenic granules to examine their role in granular development. The EPS made up approximately 20 to 14% of the extracellular polymer extracted from the granules, Methanobacterium formicicum, and Methanosarcina mazeii. The EPS produced by Methanobacterium formicicum was composed mainly of rhamnose, mannose, galactose, glucose, and amino sugars, while that produced by Methanosarcina mazeii contained ribose, galactose, glucose, and glucosamine. The same sugars were also present in the EPS produced by the granules. These results indicate that the two methanogens, especially Methanobacterium formicicum, contributed significantly to the production of the extracellular polymer of the anaerobic granules. Growth temperature, substrates (formate and H(inf2)-CO(inf2)), and the key nutrients (nitrogen and phosphate concentrations) affected polymer production by Methanobacterium formicicum.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号