首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   0篇
  2012年   3篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1990年   2篇
  1989年   4篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1982年   2篇
  1979年   1篇
  1978年   1篇
  1976年   3篇
  1974年   1篇
  1973年   2篇
  1970年   1篇
排序方式: 共有45条查询结果,搜索用时 15 毫秒
21.
The rebreathing technique for the measurement of the pulmonary O2 diffusing capacity, DO2, previously developed for resting conditions [Cerretelli et al., J. appl. Physiol. 37, 526-532 (1974)] has been modified for application to exercise and simplified to one rebreathing maneuver only. The changes consist: 1) in administering in the course of a normoxic exercise a priming breath of an O2 free mixture just before the onset of rebreathing in order to achieve rapidly the appropriate starting PO2 values on the linear part of the O2 dissociation curve as required by the method; 2) in calculating mixed venous blood O2 tension by extrapolation of the alveolar to mixed venous blood PO2 equilibration curve, instead of determining it separately. While the mean DO2 value of 21 measurements on 5 subjects at rest was 30 ml-min-1 - Torr-1 +/- 3 (S.E.), in 2 subjects exercising on a bicycle ergometer, DO2 was found to increase from a resting value of about 32 ml- min-1 - Torr-1 to 107 ml - min-1 - Torr-1 for an eightfold increase of O2 uptake. The validity and the applicability of the method are critically discussed.  相似文献   
22.
The frequency content of muscular sound (MS), detected by placing a contact sensor transducer over the belly of the biceps brachii during 10 isometric contractions of 4 s each [10-100% of maximal voluntary contraction (MVC)] in seven sedentary men, was analyzed by the maximum entropy spectral estimation and the fast Fourier transform methods. With increasing %MVC, the power spectrum of the MS enlarges and tends to be multimodal beyond 30% MVC. Independent of the method, the mean frequency is approximately 11 Hz at the lower tasks, and then it increases up to 15 Hz at 80% MVC and to 22 Hz at 100% MVC. When the effort is increased the relative power in the 15- to 45-Hz bandwidth (range of firing rate of the motor units with fast-twitch fibers) from 20% reaches 55% of the power in the 6- to 45-Hz bandwidth (firing rate range of motor units with slow- and fast-twitch fibers). Our results obtained by the two different modeling approaches confirm the reliability of the sound signal. Moreover, it appears that from the MS the motor unit activation pattern can be retrieved.  相似文献   
23.
The effects of electromagnetic fields on several processes related to cell physiology and proliferation are currently being investigated. Although the results are still not conclusive and even conflicting, there seems to be a fairly good agreement on the early effects of electromagnetic fields on the generation of free radicals and on Ca++-intracellular concentration and transport. To evaluate the long-lasting consequences of these precocious events, we examined the effects of short- and long-term magnetic field exposure on structural organization (cytokeratin or actin detection), proliferation (bromodeoxyuridine incorporation and propidium iodide staining), colony forming ability and viability (trypan blue exclusion test) of highly proliferating MCF-7 cells (from human breast carcinoma) and on slowly proliferating normal human fibroblasts (from healthy donors). Cells were exposed to either 20 or 500 microT sinusoidally oscillating (50Hz) magnetic fields for different lengths of time (1 to 4 days). Short (1 day)- and long (4 days)-time exposure to the two intensities did not affect MCF-7 growth and viability, colony number and size, or cellular distribution along the cell cycle; neither were the cell morphology and the intracellular distribution and amount of cytokeratin modified. Similarly, no modifications in the actin distribution and proliferative potential were observed in normal human fibroblasts. These findings suggest that under our experimental conditions, continuous exposure to magnetic fields does not result in any appreciable effect in both normal and tumor cells in vitro.  相似文献   
24.
The power spectral analysis of R-R interval variability (RRV) has been estimated by means of an autoregressive method in seven sedentary males at rest, during steady-state cycle exercise at 21 percent maximal oxygen uptake (%VO2max), SEM 2%, 49% VO2max, SEM 2% and 70% VO2max, SEM 2% and during recovery. The RRV, i.e. the absolute power of the spectrum, decreased 10, 100 and 500 times in the three exercise intensities, returning to resting value during recovery. In the RRV power spectrum three components have been identified: (1) high frequency peak (HF), central frequency about 0.24 Hz at rest and recovery, and 0.28 Hz, SEM 0.02, 0.37 Hz, SEM 0.03 and 0.48 Hz, SEM 0.06 during the three exercise intensities, respectively; (2) low frequency peak (LF), central frequency about 0.1 Hz independent of the metabolic state; (3) very low frequency component (VLF), less than 0.05 Hz, no peak observed. The HF peak power, as a percentage of the total power (HF%), averaged 16%, SEM 5% at rest and did not change during exercise, whereas during recovery it decreased to 5%-10%. The LF% and VLF% were about 50% and 35% at rest and during low exercise intensity, respectively. At higher intensities, LF% decreased to 16% and VLF% increased to 70%. During recovery a return to resting values occurred. The HF component may reflect the increased respiratory rate and the LF peak changes the resetting of the baroreceptor reflex with exercise. The hypothesis is made that VLF fluctuations in heart rate might be partially mediated by the sympathetic system.  相似文献   
25.
The separate contributions of the recruitment level and of the firing rate of the motor units on the soundmyogram and electromyogram time domain parameters were investigated during stimulation of the motor nerve of the cat gastrocnemius muscle. Upon orderly increase in the number of active motor units at a fixed firing rate, both the peak to peak amplitude (P-Pmax) and the root mean square (RMS) of the sound myogram increased. At full recruitment the increase in firing rate from 2.5 to 50 Hz induced an exponential decline in the P-Pmax. The RMS, however, followed this trend only from 15 to 50 Hz while showing an increase from 2.5 to 10 Hz. During simultaneous changes of recruitment and firing rate, the effect of increasing the number of motor units on the P-Pmax and RMS is dampened by the increasing firing rate. The peak to peak amplitude of the EMG compound action potential increased with the number of active motor units. Moreover, its amplitude was not influenced by the firing rate. The EMG RMS, however, increases as a function of the firing rate. The results indicate that both the number and the firing rate of the active motor units contribute to the determination of the soundmyogram characteristics. Moreover, the peculiar changes of the soundmyogram time domain properties, compared to the ones of the EMG, allow one to differentiate the influence of the motor units number and firing rate on the electrical and mechanical performance of the muscle when stimulated.  相似文献   
26.
It is still unclear whether the low-frequency oscillation in heart rate is generated by an endogenous neural oscillator or by a baroreflex resonance. Our aim was to investigate this issue by analyzing blood pressure and heart rate variability and the baroreflex function in paraplegic subjects with spinal cord injury below the fourth thoracic vertebra. These subjects were selected because they represent a model of intact central neural drive to the heart, with a partially impaired autonomic control of the vessels. In our study, arterial blood pressure and ECG were recorded in 33 able-bodied controls and in 33 subjects with spinal cord lesions between the fifth thoracic and the fourth lumbar vertebra 1) during supine rest (lowest sympathetic activation), 2) sitting on a wheelchair (light sympathetic activation), and 3) during exercise (moderate sympathetic activation). Blood pressure and heart rate spectra, coherence, and baroreflex function (sequence technique) were estimated in each condition. Compared with controls, paraplegic subjects showed a reduction of the low-frequency power of blood pressure and heart rate, and, unlike controls, a 0.1-Hz peak did not appear in their spectra. Sympathetic activation increased the 0.1-Hz peak of blood pressure and heart rate and the coherence at 0.1 Hz in controls only. Paraplegic subjects also had significantly lower baroreflex effectiveness and greater blood pressure variability. In conclusion, the disappearance of the 10-s oscillation of heart rate and blood pressure in subjects with spinal cord lesion supports the hypothesis of the baroreflex nature of this phenomenon.  相似文献   
27.
28.
Trunk (HT), limb (HL), and whole-body (HDIR = HT + HL + Hforehead) skin-to-water heat flows were measured by heat flow transducers on nine men immersed head out in water at critical temperature (TCW = 30 +/- 2 degrees C) and below [overall water temperature (TW) range = 22-32 degrees C] after up to 3 h at rest and exercise. Body heat flow was also determined indirectly (HM) from metabolic rate corrected for changes in heat stores. At rest at TCW [O2 uptake (VO2) = 0.33 +/- 0.07 l/min, n = 7], HT = 52.3 +/- 14.2 (SD) W, HL = 56.4 +/- 14.6 W, HDIR = 120 +/- 27 W, and HM = 111 +/- 29 W (significantly different from HDIR). TW markedly affected HDIR but only slightly affected HM (n = 22 experiments at TW different from TCW plus 7 experiments at TCW). During light exercise (3 MET) at TCW (VO2 = 1.06 +/- 0.26 l/min, n = 9), HT = 122 +/- 43 W, HL = 130 +/- 27 W, HDIR = 285 +/- 69 W, and HM = 260 +/- 60 W. During severe exercise (7 MET) at TCW (VO2 = 2.27 +/- 0.50 l/min, n = 4), HT = 226 +/- 100 W, HL = 262 +/- 61 W, HDIR = 517 +/- 148 W, and HM = 496 +/- 98 W. Lowering TW at 7-MET exercise (n = 9, plus 4 at TCW) had no effect on HDIR and HM. In conclusion, resting HL and HT are equal. At TW less than TCW at rest, HDIR greater than HM, showing that unexpectedly the shell was still cooling. During exercise, HL increases more than HT but less than expected from the heat production of the working limbs. Therefore some heat produced by the limbs is probably transported by blood to the trunk. During heavy exercise, HDIR is constant at all considered TW; apparently it is regulated by some thermally dependent mechanism, such as a progressive cutaneous vasodilation occurring as TW increases.  相似文献   
29.
The changes in the soundmyogram (SMG) and electromyogram (EMG) frequency content during exhausting contractions at 20%, 40%, 60% and 80% of the maximal voluntary contraction (MVC) were investigated by the spectral analysis of the SMG and EMG detected from the biceps brachii muscles of 13 healthy men. The root mean squares (rms) of the two signals were also calculated. Throughout contraction the EMG rms always increased while this was true only at 20% MVC for the SMG. A marked decrease was detected at 60% and 80% MVC. With fatigue the EMG spectra presented a compression towards the lower frequencies at all exercise intensities. The SMG showed a more complex behaviour with a transient increase in its frequency content, followed by a continuous compression of the spectra, at 60% and 80% MVC, and a nearly stable frequency content at lower contraction intensities. This study suggested that different aspects of the changes in the motor unit's activation strategy at different levels of exhausting contractions can be monitored by SMG and EMG signals.  相似文献   
30.
The effects of intermittent exposure (2 h on/22 h off) to a 200 μT horizontal, sinusoidally oscillating (50 Hz) magnetic field were studied in 210 fertilized chicken eggs. Two hundred ten control eggs (sham-exposed) were incubated in the same chamber as the experimental eggs. Chick embryos were examined for developmental anomalies and maturity stage after 48 h of incubation. Immunohistochemical analysis of extracellular membrane components (laminin, fibronectin, and type IV collagen) were conducted on day 7 and histological examinations for malformations of brain, liver, and heart, on days 7, 12, and 18 of incubation. Furthermore, egg fertility and egg weights were evaluated on days 2, 7, 12, and 18. The investigation also measured the body weight of chickens for 90 days from hatching and included histological analysis of body organs. Each variable was investigated blind. Statistical comparison between exposed and sham-exposed values did not show significant differences in any of the variables investigated. Thus, it appears that the exposure of embryos to an intermittent 200 μT magnetic field at 50 Hz does not cause developmental anomalies, changes in maturity stage, alterations in distribution of extracellular membrane components, or malformations in the brain, liver, or heart. Moreover, there were no differences in body weight, morphology, or histology of central nervous system, liver, heart, or testis in 90-day-old chickens hatched from exposed in comparison to sham-exposed eggs. © 1996 Wiley-Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号