首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1203篇
  免费   110篇
  2023年   7篇
  2022年   9篇
  2021年   30篇
  2020年   24篇
  2019年   15篇
  2018年   27篇
  2017年   24篇
  2016年   34篇
  2015年   59篇
  2014年   58篇
  2013年   72篇
  2012年   79篇
  2011年   64篇
  2010年   55篇
  2009年   53篇
  2008年   64篇
  2007年   50篇
  2006年   59篇
  2005年   50篇
  2004年   53篇
  2003年   49篇
  2002年   36篇
  2001年   19篇
  2000年   33篇
  1999年   27篇
  1998年   20篇
  1997年   19篇
  1996年   8篇
  1995年   6篇
  1994年   13篇
  1993年   7篇
  1992年   14篇
  1991年   17篇
  1990年   18篇
  1989年   20篇
  1988年   9篇
  1987年   9篇
  1986年   13篇
  1985年   7篇
  1984年   9篇
  1983年   6篇
  1982年   7篇
  1980年   9篇
  1979年   6篇
  1977年   4篇
  1975年   7篇
  1973年   4篇
  1971年   4篇
  1969年   4篇
  1966年   3篇
排序方式: 共有1313条查询结果,搜索用时 31 毫秒
101.
Phosphorus (P) is one of the most important nutrients limiting agricultural production worldwide. In acid and alkaline soils, which make up over 70% of the world's arable land, P forms insoluble compounds that are not available for plant use. To reduce P deficiencies and ensure plant productivity, nearly 30 million tons of P fertilizer are applied every year. Up to 80% of the applied P fertilizer is lost because it becomes immobile and unavailable for plant uptake. Therefore, the development of novel plant varieties more efficient in the use of P represents the best alternative to reduce the use of P fertilizers and achieve a more sustainable agriculture. We show here that the ability to use insoluble P compounds can be significantly enhanced by engineering plants to produce more organic acids. Our results show that when compared to the controls, citrate-overproducing plants yield more leaf and fruit biomass when grown under P-limiting conditions and require less P fertilizer to achieve optimal growth.  相似文献   
102.
Fleming JA  Vega LR  Solomon F 《Genetics》2000,156(1):69-80
Overexpression of the beta-tubulin binding protein Rbl2p/cofactor A is lethal in yeast cells expressing a mutant alpha-tubulin, tub1-724, that produces unstable heterodimer. Here we use RBL2 overexpression to identify mutations in other genes that affect formation or stability of heterodimer. This approach identifies four genes-CIN1, CIN2, CIN4, and PAC2-as affecting heterodimer formation in vivo. The vertebrate homologues of two of these gene products-Cin1p/cofactor D and Pac2p/cofactor E-can catalyze exchange of tubulin polypeptides into preexisting heterodimer in vitro. Previous work suggests that both Cin2p or Cin4p act in concert with Cin1p in yeast, but no role for vertebrate homologues of either has been reported in the in vitro reaction. Results presented here demonstrate that these proteins can promote heterodimer formation in vivo. RBL2 overexpression in cin1 and pac2 mutant cells causes microtubule disassembly and enhanced formation of Rbl2p-beta-tubulin complex, as it does in the alpha-tubulin mutant that produces weakened heterodimer. Significantly, excess Cin1p/cofactor D suppresses the conditional phenotypes of that mutant alpha-tubulin. Although none of the four genes is essential for viability under normal conditions, they become essential under conditions where the levels of dissociated tubulin polypeptides increase. Therefore, these proteins may provide a salvage pathway for dissociated tubulin heterodimers and so rescue cells from the deleterious effects of free beta-tubulin.  相似文献   
103.
Many effectors of microtubule assembly in vitro enhance the polymerization of subunits. However, several Saccharomyces cerevisiae genes that affect cellular microtubule-dependent processes appear to act at other steps in assembly and to affect polymerization only indirectly. Here we use a mutant α-tubulin to probe cellular regulation of microtubule assembly. tub1-724 mutant cells arrest at low temperature with no assembled microtubules. The results of several assays reported here demonstrate that the heterodimer formed between Tub1-724p and β-tubulin is less stable than wild-type heterodimer. The unstable heterodimer explains several conditional phenotypes conferred by the mutation. These include the lethality of tub1-724 haploid cells when the β-tubulin–binding protein Rbl2p is either overexpressed or absent. It also explains why the TUB1/tub1-724 heterozygotes are cold sensitive for growth and why overexpression of Rbl2p rescues that conditional lethality. Both haploid and heterozygous tub1-724 cells are inviable when another microtubule effector, PAC2, is overexpressed. These effects are explained by the ability of Pac2p to bind α-tubulin, a complex we demonstrate directly. The results suggest that tubulin-binding proteins can participate in equilibria between the heterodimer and its components.  相似文献   
104.
The yeast protein Rbl2p suppresses the deleterious effects of excess β-tubulin as efficiently as does α-tubulin. Both in vivo and in vitro, Rbl2p forms a complex with β-tubulin that does not contain α-tubulin, thus defining a second pool of β-tubulin in the cell. Formation of the complex depends upon the conformation of β-tubulin. Newly synthesized β-tubulin can bind to Rbl2p before it binds to α-tubulin. Rbl2p can also bind β-tubulin from the α/β-tubulin heterodimer, apparently by competing with α-tubulin. The Rbl2p–β-tubulin complex has a half-life of ~2.5 h and is less stable than the α/β-tubulin heterodimer. The results of our experiments explain both how excess Rbl2p can rescue cells overexpressing β-tubulin and how it can be deleterious in a wild-type background. They also suggest that the Rbl2p–β-tubulin complex is part of a cellular mechanism for regulating the levels and dimerization of tubulin chains.  相似文献   
105.
106.
In the last decades the growing awareness of the ecological importance of seagrass meadows has prompted increasing efforts to protect existing beds and restore degraded habitats. An in-depth knowledge of factors acting as major drivers of propagule settlement and recruitment is required in order to understand patterns of seagrass colonization and recovery and to inform appropriate management and conservation strategies. In this work Posidonia oceanica seedlings were reared for five months in a land-based culture facility under simulated natural hydrodynamic conditions to identify suitable substrates for seedling anchorage. Two main substrate features were investigated: firmness (i.e., sand vs. rock) and complexity (i.e., size of interstitial spaces between rocks). Seedlings were successfully grown in culture tanks, obtaining overall seedling survival of 93%. Anchorage was strongly influenced by substrate firmness and took place only on rocks, where it was as high as 89%. Anchorage occurred through adhesion by sticky root hairs. The minimum force required to dislodge plantlets attached to rocky substrates reached 23.830 N (equivalent to 2.43 kg), which would potentially allow many plantlets to overcome winter storms in the field. The ability of rocky substrates to retain seedlings increased with their complexity. The interstitial spaces between rocks provided appropriate microsites for seedling settlement, as seeds were successfully retained, and a suitable substrate for anchorage was available. In conclusion P. oceanica juveniles showed a clear-cut preference for hard substrates over the sandy one, due to the root system adhesive properties. In particular, firm and complex substrates allowed for propagule early and strong anchorage, enhancing persistence and establishment probabilities. Seedling substrate preference documented here leads to expect a more successful sexual recruitment on hard bottoms compared with soft ones. This feature could have influenced P. oceanica patterns of colonization in past and present time.  相似文献   
107.
Cyclic N6-threonylcarbamoyladenosine (‘cyclic t6A’, ct6A) is a non-thiolated hypermodification found in transfer RNAs (tRNAs) in bacteria, protists, fungi and plants. In bacteria and yeast cells ct6A has been shown to enhance translation fidelity and efficiency of ANN codons by improving the faithful discrimination of aminoacylated tRNAs by the ribosome. To further the understanding of ct6A biology we have determined the high-resolution crystal structures of CsdL/TcdA in complex with AMP and ATP, an E1-like activating enzyme from Escherichia coli, which catalyzes the ATP-dependent dehydration of t6A to form ct6A. CsdL/TcdA is a dimer whose structural integrity and dimer interface depend critically on strongly bound K+ and Na+ cations. By using biochemical assays and small-angle X-ray scattering we show that CsdL/TcdA can associate with tRNA with a 1:1 stoichiometry and with the proper position and orientation for the cyclization of t6A. Furthermore, we show by nuclear magnetic resonance that CsdL/TcdA engages in transient interactions with CsdA and CsdE, which, in the latter case, involve catalytically important residues. These short-lived interactions may underpin the precise channeling of sulfur atoms from cysteine to CsdL/TcdA as previously characterized. In summary, the combination of structural, biophysical and biochemical methods applied to CsdL/TcdA has afforded a more thorough understanding of how the structure of this E1-like enzyme has been fine tuned to accomplish ct6A synthesis on tRNAs while providing support for the notion that CsdA and CsdE are able to functionally interact with CsdL/TcdA.  相似文献   
108.
109.
110.
The past year has marked the most devastating Ebola outbreak the world has ever witnessed, with over 28,000 cases and over 11,000 deaths. Ebola virus (EBOV) has now been around for almost 50 years. In this review, we discuss past and present outbreaks of EBOV and how those variants evolved over time. We explore and discuss selective pressures that drive the evolution of different Ebola variants, and how they may modify the efficacy of therapeutic treatments and vaccines currently being developed. Finally, given the unprecedented size and spread of the outbreak, as well as the extended period of replication in human hosts, specific attention is given to the 2014–2015 West African outbreak variant (Makona).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号