首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   335篇
  免费   18篇
  2024年   1篇
  2022年   3篇
  2021年   8篇
  2020年   7篇
  2019年   6篇
  2018年   5篇
  2017年   8篇
  2016年   18篇
  2015年   10篇
  2014年   21篇
  2013年   21篇
  2012年   33篇
  2011年   32篇
  2010年   25篇
  2009年   18篇
  2008年   23篇
  2007年   27篇
  2006年   21篇
  2005年   13篇
  2004年   13篇
  2003年   21篇
  2002年   10篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1997年   1篇
  1996年   1篇
  1986年   1篇
  1983年   1篇
排序方式: 共有353条查询结果,搜索用时 171 毫秒
51.
Asthma is a complex inflammatory disease of airways. A network of reciprocal interactions between inflammatory cells, peptidic mediators, extracellular matrix components, and proteases is thought to be involved in the installation and maintenance of asthma‐related airway inflammation and remodeling. To date, new proteic mediators displaying significant activity in the pathophysiology of asthma are still to be unveiled. The main objective of this study was to uncover potential target proteins by using surface‐enhanced laser desorption/ionization‐time of flight‐mass spectrometry (SELDI‐TOF‐MS) on lung samples from mouse models of allergen‐induced airway inflammation and remodeling. In this model, we pointed out several protein or peptide peaks that were preferentially expressed in diseased mice as compared to controls. We report the identification of different five proteins: found inflammatory zone 1 or RELMα (FIZZ‐1), calcyclin (S100A6), clara cell secretory protein 10 (CC10), Ubiquitin, and Histone H4.  相似文献   
52.
53.

Background

Human African trypanosomiasis (HAT), also known as sleeping sickness, is a parasitic tropical disease. It progresses from the first, haemolymphatic stage to a neurological second stage due to invasion of parasites into the central nervous system (CNS). As treatment depends on the stage of disease, there is a critical need for tools that efficiently discriminate the two stages of HAT. We hypothesized that markers of brain damage discovered by proteomic strategies and inflammation-related proteins could individually or in combination indicate the CNS invasion by the parasite.

Methods

Cerebrospinal fluid (CSF) originated from parasitologically confirmed Trypanosoma brucei gambiense patients. Patients were staged on the basis of CSF white blood cell (WBC) count and presence of parasites in CSF. One hundred samples were analysed: 21 from stage 1 (no trypanosomes in CSF and ≤5 WBC/µL) and 79 from stage 2 (trypanosomes in CSF and/or >5 WBC/µL) patients. The concentration of H-FABP, GSTP-1 and S100β in CSF was measured by ELISA. The levels of thirteen inflammation-related proteins (IL-1ra, IL-1β, IL-6, IL-9, IL-10, G-CSF, VEGF, IFN-γ, TNF-α, CCL2, CCL4, CXCL8 and CXCL10) were determined by bead suspension arrays.

Results

CXCL10 most accurately distinguished stage 1 and stage 2 patients, with a sensitivity of 84% and specificity of 100%. Rule Induction Like (RIL) analysis defined a panel characterized by CXCL10, CXCL8 and H-FABP that improved the detection of stage 2 patients to 97% sensitivity and 100% specificity.

Conclusion

This study highlights the value of CXCL10 as a single biomarker for staging T. b. gambiense-infected HAT patients. Further combination of CXCL10 with H-FABP and CXCL8 results in a panel that efficiently rules in stage 2 HAT patients. As these molecules could potentially be markers of other CNS infections and disorders, these results should be validated in a larger multi-centric cohort including other inflammatory diseases such as cerebral malaria and active tuberculosis.  相似文献   
54.
55.

Background

Nerve growth factor (NGF) is a neurotrophin crucial for the development and survival of neurons. It also acts on cells of the immune system which express the NGF receptors TrkA and p75NTR and can be produced by them. However, mouse NK cells have not yet been studied in this context.

Methodology/Principal Findings

We used cell culture, flow cytometry, confocal microscopy and ELISA assays to investigate the expression of NGF receptors by NK cells and their secretion of NGF. We show that resting NK cells express TrkA and that the expression is different on NK cell subpopulations defined by the relative presence of CD27 and CD11b. Expression of TrkA is dramatically increased in IL-2-activated NK cells. The p75NTR is expressed only on a very low percentage of NK cells. Functionally, NGF moderately inhibits NK cell degranulation, but does not influence proliferation or cytokine production. NK cells do not produce NGF.

Conclusions/Significance

We demonstrate for the first time that mouse NK cells express the NGF receptor TrkA and that this expression is dynamically regulated.  相似文献   
56.
The cardiac cycle imposes a mechanical stress that dilates elastic carotid arteries, while shear stress largely contributes to the endothelium-dependent dilation of downstream cerebral arteries. In the presence of dyslipidemia, carotid arteries stiffen while the endothelial function declines. We reasoned that stiffening of carotid arteries would be prevented by reducing resting heart rate (HR), while improving the endothelial function would regulate cerebral artery compliance and function. Thus we treated or not 3-mo-old male atherosclerotic mice (ATX; LDLr(-/-):hApoB(+/+)) for 3 mo with the sinoatrial pacemaker current inhibitor ivabradine (IVA), the β-blocker metoprolol (METO), or subjected mice to voluntary physical training (PT). Arterial (carotid and cerebral artery) compliance and endothelium-dependent flow-mediated cerebral dilation were measured in isolated pressurized arteries. IVA and METO similarly reduced (P < 0.05) 24-h HR by ≈15%, while PT had no impact. As expected, carotid artery stiffness increased (P < 0.05) in ATX mice compared with wild-type mice, while cerebral artery stiffness decreased (P < 0.05); this paradoxical increase in cerebrovascular compliance was associated with endothelial dysfunction and an augmented metalloproteinase-9 (MMP-9) activity (P < 0.05), without changing the lipid composition of the wall. Reducing HR (IVA and METO) limited carotid artery stiffening, but plaque progression was prevented by IVA only. In contrast, IVA maintained and PT improved cerebral endothelial nitric oxide synthase-dependent flow-mediated dilation and wall compliance, and both interventions reduced MMP-9 activity (P < 0.05); METO worsened endothelial dysfunction and compliance and did not reduce MMP-9 activity. In conclusion, HR-dependent mechanical stress contributes to carotid artery wall stiffening in severely dyslipidemic mice while cerebrovascular compliance is mostly regulated by the endothelium.  相似文献   
57.
Phagocytosis is a process of innate immunity that allows for the enclosure of pathogens within the phagosome and their subsequent destruction through the production of reactive oxygen species (ROS). Although these processes have been associated with increases of intracellular Ca(2+) concentrations, the mechanisms by which Ca(2+) could regulate the different phases of phagocytosis remain unknown. The aim of this study was to investigate the Ca(2+) signaling pathways involved in the regulation of FcγRs-induced phagocytosis. Our work focuses on IgG-opsonized zymosan internalization and phagosomal ROS production in DMSO-differentiated HL-60 cells and neutrophils. We found that chelation of intracellular Ca(2+) by BAPTA or emptying of the intracellular Ca(2+) store by thapsigargin reduced the efficiency of zymosan internalization. Using an small interfering RNA strategy, our data establish that the observed Ca(2+) release occurs through two isoforms of inositol 1,4,5-triphosphate receptors, ITPR1 and ITPR3. In addition, we provide evidence that phagosomal ROS production is dependent on extracellular Ca(2+) entry. We demonstrate that the observed Ca(2+) influx is supported by ORAI calcium release-activated calcium modulator 1 (Orai1) and stromal interaction molecule 1 (STIM1). This result suggests that extracellular Ca(2+) entry, which is required for ROS production, is mediated by a store-operated Ca(2+) mechanism. Finally, our data identify the complex formed by S100A8 and S100A9 (S100 calcium-binding protein A8 and A9 complex), two Ca(2+)-binding proteins, as the site of interplay between extracellular Ca(2+) entry and intraphagosomal ROS production. Thus, we demonstrate that FcγR-mediated phagocytosis requires intracellular Ca(2+) store depletion for the internalization phase. Then phagosomal ROS production requires extracellular Ca(2+) entry mediated by Orai1/STIM1 and relayed by S100A8-A9 as Ca(2+) sensor.  相似文献   
58.
Epidermal growth factor receptor (EGFR) is overexpressed in many cancer types including ~30% of breast cancers. Several small molecule tyrosine kinase inhibitors (TKIs) targeting EGFR have shown clinical efficacy in lung and colon cancers, but no benefit has been noted in breast cancer. Thirteen EGFR expressing breast cancer cell lines were analyzed for response to EGFR TKIs. Seven were found to be EGFR TKI resistant; while shRNA knockdown of EGFR determined that four of these cell lines retained the requirement of EGFR protein expression for growth. Interestingly, EGFR localized to plasma membrane lipid rafts in all four of these EGFR TKI-resistant cell lines, as determined by biochemical raft isolation and immunofluorescence. When lipid rafts were depleted of cholesterol using lovastatin, all four cell lines were sensitized to EGFR TKIs. In fact, the effects of the cholesterol biosynthesis inhibitors and gefitinib were synergistic. While gefitinib effectively abrogated phosphorylation of Akt- and mitogen-activated protein kinase in an EGFR TKI-sensitive cell line, phosphorylation of Akt persisted in two EGFR TKI-resistant cell lines, however, this phosphorylation was abrogated by lovastatin treatment. Thus, we have shown that lipid raft localization of EGFR correlates with resistance to EGFR TKI-induced growth inhibition and pharmacological depletion of cholesterol from lipid rafts decreases this resistance in breast cancer cell lines. Furthermore, we have presented evidence to suggest that when EGFR localizes to lipid rafts, these rafts provide a platform to facilitate activation of Akt signaling in the absence of EGFR kinase activity.  相似文献   
59.

Background

Insecticide-treated nets (ITNs) and indoor residual spraying (IRS) of houses provide effective malaria transmission control. There is conflicting evidence about whether it is more beneficial to provide both interventions in combination. A cluster randomised controlled trial was conducted to investigate whether the combination provides added protection compared to ITNs alone.

Methods and Findings

In northwest Tanzania, 50 clusters (village areas) were randomly allocated to ITNs only or ITNs and IRS. Dwellings in the ITN+IRS arm were sprayed with two rounds of bendiocarb in 2012. Plasmodium falciparum prevalence rate (PfPR) in children 0.5–14 y old (primary outcome) and anaemia in children <5 y old (secondary outcome) were compared between study arms using three cross-sectional household surveys in 2012. Entomological inoculation rate (secondary outcome) was compared between study arms.IRS coverage was approximately 90%. ITN use ranged from 36% to 50%. In intention-to-treat analysis, mean PfPR was 13% in the ITN+IRS arm and 26% in the ITN only arm, odds ratio = 0.43 (95% CI 0.19–0.97, n = 13,146). The strongest effect was observed in the peak transmission season, 6 mo after the first IRS. Subgroup analysis showed that ITN users were additionally protected if their houses were sprayed. Mean monthly entomological inoculation rate was non-significantly lower in the ITN+IRS arm than in the ITN only arm, rate ratio = 0.17 (95% CI 0.03–1.08).

Conclusions

This is the first randomised trial to our knowledge that reports significant added protection from combining IRS and ITNs compared to ITNs alone. The effect is likely to be attributable to IRS providing added protection to ITN users as well as compensating for inadequate ITN use. Policy makers should consider deploying IRS in combination with ITNs to control transmission if local ITN strategies on their own are insufficiently effective. Given the uncertain generalisability of these findings, it would be prudent for malaria control programmes to evaluate the cost-effectiveness of deploying the combination.

Trial registration

www.ClinicalTrials.gov NCT01697852 Please see later in the article for the Editors'' Summary  相似文献   
60.
The identity of plant host genetic factors controlling the composition of the plant microbiota and the extent to which plant genes affect associated microbial populations is currently unknown. Here, we use a candidate gene approach to investigate host effects on the phyllosphere community composition and abundance. To reduce the environmental factors that might mask genetic factors, the model plant Arabidopsis thaliana was used in a gnotobiotic system and inoculated with a reduced complexity synthetic bacterial community composed of seven strains representing the most abundant phyla in the phyllosphere. From a panel of 55 plant mutants with alterations in the surface structure, cell wall, defense signaling, secondary metabolism, and pathogen recognition, a small number of single host mutations displayed an altered microbiota composition and/or abundance. Host alleles that resulted in the strongest perturbation of the microbiota relative to the wild-type were lacs2 and pec1. These mutants affect cuticle formation and led to changes in community composition and an increased bacterial abundance relative to the wild-type plants, suggesting that different bacteria can benefit from a modified cuticle to different extents. Moreover, we identified ein2, which is involved in ethylene signaling, as a host factor modulating the community''s composition. Finally, we found that different Arabidopsis accessions exhibited different communities, indicating that plant host genetic factors shape the associated microbiota, thus harboring significant potential for the identification of novel plant factors affecting the microbiota of the communities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号