首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   4篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   1篇
  2013年   2篇
  2012年   5篇
  2011年   3篇
  2010年   3篇
  2009年   4篇
  2008年   2篇
  2007年   3篇
  2005年   4篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1969年   1篇
排序方式: 共有47条查询结果,搜索用时 15 毫秒
31.
32.
When several symbionts infect simultaneously the same host (multiple infections), the interactions between them affect the dynamics of the symbiotic population. Despite their widespread occurrence, associations with multiple vertically transmitted symbionts have attracted little attention. Vertical transmission tends to homogenize the symbiotic population because of the bottleneck that occurs at transmission. However, fitness advantages conferred on the host by the different symbionts or the induction of reproductive manipulations can make it possible for multiple infections to persist. We used a matrix population model to understand the kind of interactions that can emerge between vertically transmitted symbionts in established multiple infections. Selection acts only to maximize the production of multiply-infected offspring. For a wide range of parameters, this condition allows cooperation between symbionts to be selected for, through their co-transmission, even when it generates additional costs for female fecundity, a reduction in individual transmission, or affects the dependence upon other symbionts.  相似文献   
33.
Cytoplasmically inherited symbiotic Wolbachia bacteria are known to induce a diversity of phenotypes on their numerous arthropod hosts including cytoplasmic incompatibility, male-killing, thelytokous parthenogenesis, and feminization. In the wasp Asobara tabida (Braconidae), in which all individuals harbor three genotypic Wolbachia strains (wAtab1, wAtab2 and wAtab3), the presence of Wolbachia is required for insect oogenesis. To elucidate the phenotype of each Wolbachia strain on host reproduction, especially on oogenesis, we established lines of A. tabida harboring different combinations of these three bacterial strains. We found that wAtab3 is essential for wasp oogenesis, whereas the two other strains, wAtabl and wAtab2, seem incapable to act on this function. Furthermore, interline crosses showed that strains wAtab1 and wAtab2 induce partial (about 78%) cytoplasmic incompatibility of the female mortality type. These results support the idea that bacterial genotype is a major factor determining the phenotype induced by Wolbachia on A. tabida hosts. We discuss the implications of these findings for current hypotheses regarding the evolutionary mechanisms by which females of A. tabida have become dependent on Wolbachia for oogenesis.  相似文献   
34.
Vavre F  de Jong JH  Stouthamer R 《Heredity》2004,93(6):592-596
In Hymenoptera, complete parthenogenesis, that is thelytoky, is a common phenomenon where virgin females produce only daughters. Thelytoky is often induced by bacteria of the genus Wolbachia, but can also be genetically determined by the insect itself, as in the genus Trichogramma where both forms exist. In order to compare these two forms of thelytoky, chromosome behaviour analysis in young eggs and genetic analysis of microsatellite markers were carried out in the wasp Trichogramma cacoeciae, where thelytoky is genetically determined. Microscopic studies revealed that during female gamete formation meiotic cells undergo only a single equational division followed by the expulsion of a single polar body. This absence of meiotic recombination and reduction corresponds well with the high levels of heterozygosity observed in females collected from the field and a nonsegregation pattern in the offspring of heterozygous females. We therefore concluded that diploidy in T. cacoeciae is maintained through an apomictic cloning mechanism and that the incidence of thelytoky under genetic control of the wasp differs entirely from the mechanism induced by Wolbachia infection, where thelytoky is restored through gamete duplication.  相似文献   
35.
Most organisms show self-sustained circadian oscillations or biological clocks which control their daily fluctuations in behavioural and physiological activities. While extensive progress has been made in understanding the molecular mechanisms of biological clocks, there have been few clear demonstrations of the fitness value of endogenous rhythms. This study investigated the adaptive significance of circadian rhythms in a Drosophila parasitoid community. The activity rhythms of three sympatric Drosophila parasitoids are out of phase, the competitively inferior parasitoid species being active earlier than the superior competitor. This temporal segregation appears at least partially determined by endogenous periods of the clock which also vary between species and which correlate the time of activity. This earlier activity of the inferior competitor significantly reduces its intrinsic competitive disadvantage when multiparasitism occurs, thus suggesting that natural selection acting on the phase of the rhythm could substantially deviate the endogenous period from the optimal ca. 24 h period. This study demonstrates that temporal segregation of competing species could be endogenously controlled, which undoubtedly favours their coexistence in nature and also shows how natural selection can act on biological clocks to shape daily activity patterns.  相似文献   
36.
The evolution of symbioses along the continuum between parasitism and mutualism can be influenced by the oxidative homeostasis, that is the balance between reactive oxygen species (ROS) and antioxidant molecules. Indeed, ROS can contribute to the host immune defence to regulate symbiont populations, but are also toxic. This interplay between ROS and symbiosis is notably exemplified by recent results in arthropod–Wolbachia interactions. Wolbachia are symbiotic bacteria involved in a wide range of interactions with their arthropods hosts, from facultative, parasitic associations to obligatory, mutualistic ones. In this study, we used DrosophilaWolbachia associations to determine whether the oxidative homeostasis plays a role in explaining the differences between phenotypically distinct arthropod–Wolbachia symbioses. We used Drosophila lines with different Wolbachia infections and measured the effects of pro‐oxidant (paraquat) and antioxidant (glutathione) treatments on the Wolbachia density and the host survival. We show that experimental manipulations of the oxidative homeostasis can reduce the cost of the infection through its effect on Wolbachia density. We discuss the implication of this result from an evolutionary perspective and argue that the oxidative homeostasis could underlie the evolution of tolerance and dependence on Wolbachia.  相似文献   
37.
Regulation of microbial population density is a necessity in stable symbiotic interactions. In Wolbachia symbiosis, both bacterial and host genotypes are involved in density regulation, but environmental factors may also affect bacterial population density. Here, we studied the interaction between three strains of Wolbachia in two divergent homozygous lines of the wasp Leptopilina heterotoma at two different temperatures. Wolbachia density varied between the two host genotypes at only one temperature. Moreover, at this temperature, reciprocal-cross F1 insects displayed identical Wolbachia densities, which were intermediate between the densities in the two parental lines. While these findings confirm that the host genotype plays an important role in Wolbachia density, they also highlight its interaction with environmental conditions, making possible the evolution of local adaptations for the regulation of Wolbachia density.  相似文献   
38.
Bacteriophages are common viruses infecting prokaryotes. In addition to their deadly effect, phages are also involved in several evolutionary processes of bacteria, such as coding functional proteins potentially beneficial to them, or favoring horizontal gene transfer through transduction. The particular lifestyle of obligatory intracellular bacteria usually protects them from phage infection. However, Wolbachia, an intracellular alpha-proteobacterium, infecting diverse arthropod and nematode species and best known for the reproductive alterations it induces, harbors a phage named WO, which has recently been proven to be lytic. Here, phage infection was checked in 31 Wolbachia strains, which induce 5 different effects in their hosts and infect 25 insect species and 3 nematodes. Only the Wolbachia infecting nematodes and Trichogramma were found devoid of phage infection. All the 25 detected phages were characterized by the DNA sequence of a minor capsid protein gene. Based on all data currently available, phylogenetic analyses show a lack of congruency between Wolbachia or insect and phage WO phylogenies, indicating numerous horizontal transfers of phage among the different Wolbachia strains. The absence of relation between phage phylogeny and the effects induced by Wolbachia suggests that WO is not directly involved in these effects. Implications on phage WO evolution are discussed.  相似文献   
39.

Background  

The maternally inherited, bacterial symbiont, parthenogenesis inducing (PI) Wolbachia, causes females in some haplodiploid insects to produce daughters from both fertilized and unfertilized eggs. The symbionts, with their maternal inheritance, benefit from inducing the production of exclusively daughters, however the optimal sex ratio for the nuclear genome is more male-biased. Here we examine through models how an infection with PI-Wolbachia in a previously uninfected population leads to a genomic conflict between PI-Wolbachia and the nuclear genome. In most natural populations infected with PI-Wolbachia the infection has gone to fixation and sexual reproduction is impossible, specifically because the females have lost their ability to fertilize eggs, even when mated with functional males.  相似文献   
40.

Background  

Bacteria of the genus Wolbachia are reproductive parasites widespread among arthropods. The most common effect arising from the presence of Wolbachia in a population is Cytoplasmic Incompatibility (CI), whereby postmating reproductive isolation occurs in crosses between an infected male and an uninfected female, or when a male is infected with a different strain of Wolbachia to that of the female (bidirectional CI). Previous theoretical models have demonstrated that bidirectional CI can contribute to the genetic divergence of populations in haploid and diploid organisms. However, haplodiploid organisms were not considered in these models even though they include Nasonia parasitoid wasps – the best example of the implication of Wolbachia in ongoing speciation. Moreover, previous work did not investigate inbreeding mating systems, which are frequently observed in arthropod species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号