首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   4篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   1篇
  2013年   2篇
  2012年   5篇
  2011年   3篇
  2010年   3篇
  2009年   4篇
  2008年   2篇
  2007年   3篇
  2005年   4篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1969年   1篇
排序方式: 共有47条查询结果,搜索用时 15 毫秒
11.
The genome of “Candidatus Portiera aleyrodidarum,” the primary endosymbiont of the whitefly Bemisia tabaci (Mediterranean species), is reported. It presents a reduced genome (357 kb) encoding the capability to synthetize, or participate in the synthesis of, several amino acids and carotenoids, being the first insect endosymbiont capable of supplying carotenoids.  相似文献   
12.
1. Glyceride biosynthesis from glycerol phosphate and [1-(14)C]palmitate was studied in liver homogenates of rats that were fed ad libitum or starved for 36-40hr. The changes in enzyme activity were related to total DNA content or total liver homogenate as these were found to be equivalent and to be the most meaningful parameters. 2. In liver homogenates from fed rats, labelled palmitate was incorporated mainly into phosphatidate (58% of the total incorporation into lipids), diglycerides (25%) and triglycerides (16%), whereas monoglycerides, cholesterol esters and phospholipids other than phosphatidate were labelled only to a small extent. Addition of particle-free supernatant to full homogenates increased the total incorporation of palmitate by 45% and the pattern of incorporation altered to 53% incorporated into triglycerides, 24% into diglycerides and 17% into phosphatidate. This result suggested that, in liver homogenates, phosphatidate phosphohydrolase (EC 3.1.3.4) may be rate-limiting in the biosynthesis of glycerides via the glycerol phosphate pathway. 3. Upon starvation, the amount of palmitate incorporated per liver into total phospholipids plus glycerides was decreased to between 68% and 75% of that observed with fed animals. In homogenates from fed animals 41-44% of the labelled phospholipids plus glycerides was in glycerides; this value increased to between 63% and 75% with starved rats. Of the palmitate incorporated into total phospholipids, between 85% and 86% was found in phosphatidate, independent of the nutritional state of the animal. The ratio of palmitate incorporated into triglycerides/diglycerides rose from 0.7, obtained with fed rats, to 1.0 with starved animals. 4. These results indicate that starvation caused a decrease in the activity (per total liver) of acyl-CoA-glycerol phosphate acyltransferase(s) (EC 2.3.1.15) and an increase in the activity of acyl-CoA-diglyceride acyltransferase (EC 2.3.1.20). The largest change, however, seemed to be related to the increased activity of the phosphatidate phosphohydrolase in the particle-free supernatant. 5. The latter enzyme was assayed in the particle-free supernatant with membrane-bound phosphatidate as substrate. In starvation, the activity per total liver was increased to between 130% and 190% and the specific activity to between 180% and 320% of the values for fed rats.  相似文献   
13.
14.
Endosymbiotic reproductive manipulators may have drastic effects on the ecological and evolutionary dynamics of their hosts. The prevalence of these endosymbionts reflects both their ability to manipulate their hosts and the history of the host populations. The little fire ant Wasmannia auropunctata displays a polymorphism in both its reproductive system (sexual versus clonal populations) and the invasive status of its populations (associated to a habitat shift). We first screened for the presence of a diverse array of reproductive parasites in sexual and clonal populations of W. auropunctata, as a means to investigate the role of endosymbionts in reproductive phenotypes. Wolbachia was the only symbiont found and we then focused on its worldwide distribution and diversity in natural populations of W. auropunctata. Using a multilocus scheme, we further characterized the Wolbachia strains present in these populations. We found that almost all the native sexual populations and only a few clonal populations are infected by Wolbachia. The presence of similar Wolbachia strains in both sexual and clonal populations indicates that they are probably not the cause of the reproductive system polymorphism. The observed pattern seems rather associated to the invasion process of W. auropunctata. In particular, the observed loss of Wolbachia in clonal populations, that recurrently emerged from sexual populations, likely resulted from natural heat treatment and/or relaxed selection during the shift in habitat associated to the invasion process.  相似文献   
15.
Endosymbiotic bacteria are often transmitted vertically from one host generation to the next via oocytes cytoplasm. The generally small number of colonizing bacteria in the oocytes leads to a bottleneck at each generation, resulting in genetic homogenization of the symbiotic population. Nevertheless, in many of the species infected by Wolbachia (maternally transmitted bacteria), individuals do sometimes simultaneously harbor several bacterial strains, owing to the fact that Wolbachia induces cytoplasmic incompatibility (CI) that maintains multiple infections. CI occurs in crosses in which the male is infected by at least one Wolbachia strain that the female lacks, and consequently it favors individuals with the greatest symbiotic diversity. CI results in death of offspring in diploid species. In haplodiploid individuals, unfertilized eggs hatch normally into males and fertilized ones, which would lead to females, either die (female mortality type: FM) or develop into males (male development type: MD). Until now, only one theoretical study, restricted to diploid species, has investigated the associations where multiple CI-inducing Wolbachia co-exist, and explored the conditions under which multiple infections can spread. The consequences of double infections on Wolbachia maintenance in host populations, and the selective pressures to which it is subjected have not yet been analysed. Here, we have re-written a model previously developed for single infection in matrix form, which allows easy extension to multiple infections and introduction of mutant strains. We show that (i) the CI type has a strong influence on invasiveness and maintenance of multiple infections; (ii) double infection lowers the invasion threshold of less competitive strains that hitch-hike with their companion strain; (iii) when multiple infections occur, as in single infections, the strains selected are those which maximize the production of infected offspring; and (iv) for the MD CI type, invasion of mutant strains can carry the whole infection to extinction.  相似文献   
16.
17.
Among eukaryotes, sexual reproduction is by far the most predominant mode of reproduction. However, some systems maintaining sexuality appear particularly labile and raise intriguing questions on the evolutionary routes to asexuality. Thelytokous parthenogenesis is a form of spontaneous loss of sexuality leading to strong distortion of sex ratio towards females and resulting from mutation, hybridization or infection by bacterial endosymbionts. We investigated whether ecological specialization is a likely mechanism of spread of thelytoky within insect communities. Focusing on the highly specialized genus Megastigmus (Hymenoptera: Torymidae), we first performed a large literature survey to examine the distribution of thelytoky in these wasps across their respective obligate host plant families. Second, we tested for thelytoky caused by endosymbionts by screening in 15 arrhenotokous and 10 thelytokous species for Wolbachia, Cardinium, Arsenophonus and Rickettsia endosymbionts and by performing antibiotic treatments. Finally, we performed phylogenetic reconstructions using multilocus sequence typing (MLST) to examine the evolution of endosymbiont‐mediated thelytoky in Megastigmus and its possible connections to host plant specialization. We demonstrate that thelytoky evolved from ancestral arrhenotoky through the horizontal transmission and the fixation of the parthenogenesis‐inducing Wolbachia. We find that ecological specialization in Wolbachia's hosts was probably a critical driving force for Wolbachia infection and spread of thelytoky, but also a constraint. Our work further reinforces the hypothesis that community structure of insects is a major driver of the epidemiology of endosymbionts and that competitive interactions among closely related species may facilitate their horizontal transmission.  相似文献   
18.
Wolbachia, probably the most common animal endosymbiont, infects a wide range of arthropods as well as filarial nematodes. Generally vertically transmitted from mothers to offspring, it has evolved various strategies, ranging from brutal male-killing to mutualism, which facilitate invasion and persistence of the infections within host populations. Current interest in Wolbachia as a potential control agent against harmful nematodes and arthropods makes it important to be able to predict Wolbachia epidemiology and evolutionary trajectory. Here we highlight recent theoretical developments and suggest future modelling and empirical directions for basic and applied research in this domain.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号