首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   340篇
  免费   23篇
  2023年   3篇
  2022年   6篇
  2021年   6篇
  2020年   6篇
  2019年   3篇
  2018年   5篇
  2017年   7篇
  2016年   12篇
  2015年   22篇
  2014年   17篇
  2013年   23篇
  2012年   22篇
  2011年   14篇
  2010年   17篇
  2009年   6篇
  2008年   20篇
  2007年   27篇
  2006年   16篇
  2005年   19篇
  2004年   21篇
  2003年   19篇
  2002年   13篇
  2001年   5篇
  2000年   7篇
  1999年   5篇
  1998年   3篇
  1997年   3篇
  1995年   4篇
  1992年   4篇
  1991年   5篇
  1990年   4篇
  1989年   1篇
  1988年   4篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
  1963年   1篇
排序方式: 共有363条查询结果,搜索用时 31 毫秒
91.
Efficient Agrobacterium tumefaciens-mediated transformation and a higher recovery of transformed plants of cucumber cv. Poinsett76 were achieved via direct organogenesis from cotyledon explants. Stable transformants were obtained by inoculating explants with A. tumefaciens strains EHA105 or LBA4404, both harboring the binary vector pME508, which contains the neomycin phosphotransferase II (nptII) and phosphinothricin resistance genes (bar) conferring resistance to kanamycin and PPT, respectively, as selectable markers and the sgfp-tyg gene for the green fluorescent protein (GFP) as a visual marker driven by the constitutive CaMV35S promoter in the presence of acetosyringone (50 μM). Transformed shoots were obtained on MS Murashige and Skoog (Plant Physiol. 15: 473–497, 1962) medium supplemented with 1 mg L−1 benzyladenine (BA), 20 mg L−1 l-glutamine and 2 mg L−1 phosphinothricin (PPT) or 100 mg L−1 kanamycin. The regenerated shoots were examined in vivo using a hand-held long wave UV lamp for GFP expression. The GFP screening helped identify escapes and chimeric shoots at regular intervals to increase the growth of transformed shoots on cotyledon explants. Elongation and rooting of putative transformants were achieved on PPT (2 mg L−1) containing MS media with 0.5 mg L−1 gibberellic acid (GA3) and 0.6 mg L−1 indole butyric acid (IBA), respectively. PCR and Southern analyses confirmed the integration of the sgfp gene into the genome of T0 and the progenies. T1 segregation of transgenic progeny exhibited Mendelian inheritance of the transgene. The use of EHA105 resulted in 21% transformation efficiency compared to 8.5% when LBA4404 was used. This higher rate was greatly facilitated by PPT selection coupled with effective screening of transformants for GFP expression, thus making the protocol highly useful for the recovery of a higher number of transgenic cucumber plants.  相似文献   
92.

Background

The enzyme activities catalysed by flavivirus non-structural protein 3 (NS3) are essential for virus replication. They are distributed between the N-terminal protease domain in the first one-third and the C-terminal ATPase/helicase and nucleoside 5′ triphosphatase domain which forms the remainder of the 618-aa long protein.

Methodology/Principal Findings

In this study, dengue full-length NS3 protein with residues 49 to 66 of NS2B covalently attached via a flexible linker, was used as bait in biopanning with a naïve human Fab phage-display library. Using a range of truncated constructs spanning the NS2B cofactor region and the full-length NS3, 10 unique Fab were identified and characterized. Of these, monoclonal Fab 3F8 was shown to bind α3″ (residues 526 through 531) within subdomain III of the helicase domain. The antibody inhibits the ATPase and helicase activites of NS3 in biochemical assays and reduces DENV replication in HEK293 cells that were previously transfected with Fab 3F8 compared with mock transfected cells.

Conclusions/Significance

Antibodies such as 3F8 are valuable tools for studying the molecular mechanisms of flaviviral replication and for the monospecific detection of replicating dengue virus in vivo.  相似文献   
93.
The Conserved Domain Database (CDD) is now indexed as a separate database within the Entrez system and linked to other Entrez databases such as MEDLINE(R). This allows users to search for domain types by name, for example, or to view the domain architecture of any protein in Entrez's sequence database. CDD can be accessed on the WorldWideWeb at http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=cdd. Users may also employ the CD-Search service to identify conserved domains in new sequences, at http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi. CD-Search results, and pre-computed links from Entrez's protein database, are calculated using the RPS-BLAST algorithm and Position Specific Score Matrices (PSSMs) derived from CDD alignments. CD-Searches are also run by default for protein-protein queries submitted to BLAST(R) at http://www.ncbi.nlm.nih.gov/BLAST. CDD mirrors the publicly available domain alignment collections SMART and PFAM, and now also contains alignment models curated at NCBI. Structure information is used to identify the core substructure likely to be present in all family members, and to produce sequence alignments consistent with structure conservation. This alignment model allows NCBI curators to annotate 'columns' corresponding to functional sites conserved among family members.  相似文献   
94.
95.
The gram-negative bacterium Xanthomonas campestris pv. vesicatoria is the causal agent of spot disease in tomato and pepper. Plants of the tomato line Hawaii 7981 are resistant to race T3 of X. campestris pv. vesicatoria expressing the type III effector protein AvrXv3 and develop a typical hypersensitive response upon bacterial challenge. A combination of suppression subtractive hybridization and microarray analysis identified a large set of cDNAs that are induced or repressed during the resistance response of Hawaii 7981 plants to X. campestris pv. vesicatoria T3 bacteria. Sequence analysis of the isolated cDNAs revealed that they correspond to 426 nonredundant genes, which were designated as XRE (Xanthomonas-regulated) genes and were classified into more than 20 functional classes. The largest functional groups contain genes involved in defense, stress responses, protein synthesis, signaling, and photosynthesis. Analysis of XRE expression kinetics during the tomato resistance response to X. campestris pv. vesicatoria T3 revealed six clusters of genes with coordinate expression. In addition, by using isogenic X. campestris pv. vesicatoria T2 strains differing only by the avrXv3 avirulence gene, we found that 77% of the identified XRE genes were directly modulated by expression of the AvrXv3 effector protein. Interestingly, 64% of the XRE genes were also induced in tomato during an incompatible interaction with an avirulent strain of Pseudomonas syringae pv. tomato. The identification and expression analysis of X. campestris pv. vesicatoria T3-modulated genes, which may be involved in the control or in the execution of plant defense responses, set the stage for the dissection of signaling and cellular responses activated in tomato plants during the onset of spot disease resistance.  相似文献   
96.
Aminoacyl tRNA synthetases (ARS) catalyze the ligation of amino acids to cognate tRNAs. Chordate ARSs have evolved distinctive features absent from ancestral forms, including compartmentalization in a multisynthetase complex (MSC), noncatalytic peptide appendages, and ancillary functions unrelated to aminoacylation. Here, we show that glutamyl-prolyl-tRNA synthetase (GluProRS), a bifunctional ARS of the MSC, has a regulated, noncanonical activity that blocks synthesis of a specific protein. GluProRS was identified as a component of the interferon (IFN)-gamma-activated inhibitor of translation (GAIT) complex by RNA affinity chromatography using the ceruloplasmin (Cp) GAIT element as ligand. In response to IFN-gamma, GluProRS is phosphorylated and released from the MSC, binds the Cp 3'-untranslated region in an mRNP containing three additional proteins, and silences Cp mRNA translation. Thus, GluProRS has divergent functions in protein synthesis: in the MSC, its aminoacylation activity supports global translation, but translocation of GluProRS to an inflammation-responsive mRNP causes gene-specific translational silencing.  相似文献   
97.
The reticuloendothelial system has a central role in erythropoiesis and iron homeostasis. An important function of reticuloendothelial macrophages is phagocytosis of senescent red blood cells. The iron liberated from heme is recycled for delivery to erythrocyte precursors for a new round of hemoglobin synthesis. The molecular mechanism by which recycled iron is released from macrophages remains unresolved. We have investigated the mechanism of macrophage iron efflux, focusing on the role of ceruloplasmin (Cp), a copper protein with a potent ferroxidase activity that converts Fe2+ to Fe3+ in the presence of molecular oxygen. As shown by others, Cp markedly increased iron binding to apotransferrin at acidic pH; however, the physiological significance of this finding is uncertain because little stimulation was observed at neutral pH. Introduction of a hypoxic atmosphere resulted in marked Cp-stimulated binding of iron to apotransferrin at physiological pH. The role of Cp in cellular iron release was examined in U937 monocytic cells induced to differentiate to the macrophage lineage. Cp added at its normal plasma concentration increased the rate of 55Fe release from U937 cells by about 250%. The stimulation was absolutely dependent on the presence of apotransferrin and hypoxia. Cp-stimulated iron release was confirmed in mouse peritoneal macrophages. Stimulation of iron release required an intracellular "labile iron pool" that was rapidly depleted in the presence of Cp and apotransferrin. Ferroxidase-mediated loading of iron into apotransferrin was critical for iron release because ferroxidase-deficient Cp was inactive and because holotransferrin could not substitute for apotransferrin. The extracellular iron concentration was critical as shown by inhibition of iron release by exogenous free iron, and marked enhancement of release by an iron chelator. Together these data show that Cp stimulates iron release from macrophages under hypoxic conditions by a ferroxidase-dependent mechanism, possibly involving generation of a negative iron gradient.  相似文献   
98.
Sparse fur hemizygous male mice are over 90% deficient in ornithine transcarbamylase and exhibit increased synthesis of orotic acid. Because our earlier studies have demonstrated that orotic acid is a liver tumor promoter in the rat, it was of interest to determine whether this genetic disorder also increases the risk of tumor promotion. The results revealed that the livers of mutant mice showed a fourfold increase in uridine nucleotides and a 50% decrease in adenosine nucleotides compared to corresponding controls, a pattern of nucleotide pool imbalance similar to that seen in the livers of rats exposed to orotic acid under promoting conditions. Creation of such an imbalance appears to be important for orotic acid to exert its promotional effects. Sparse fur mutant mouse may, therefore, be an ideal animal model to study the tumor-promoting effects of orotate.  相似文献   
99.
100.
The faithful segregation of chromosomes during meiosis is vital for sexual reproduction. Currently, little is known about the molecular mechanisms regulating the initiation and completion of meiotic anaphase. We show that inactivation of CUL-2, a member of the cullin family of ubiquitin ligases, delays or abolishes meiotic anaphase II with no effect on anaphase I, indicating differential regulation during the two meiotic stages. In cul-2 mutants, the cohesin REC-8 is removed from chromosomes normally during meiosis II and sister chromatids separate, suggesting that the failure to complete anaphase results from a defect in chromosome movement rather than from a failure to sever chromosome attachments. CUL-2 is required for the degradation of cyclin B1 in meiosis and inactivation of cyclin B1 partially rescued the meiotic delay in cul-2 mutants. In cul-2 mutants, the failure to degrade cyclin B1 precedes the metaphase II arrest. CUL-2 is also required for at least two aspects of embryonic polarity. The extended meiosis II in cul-2 mutants induces polarity reversals that include reversed orientation of polarity proteins, P granules, pronuclei migration and asymmetric cell division. Independently of its role in meiotic progression, CUL-2 is required to limit the initiation/spread of the polarity protein PAR-2 in regions distant from microtubule organizing centers. Finally, we show that inactivation of the leucine-rich repeat protein ZYG-11 produces meiotic and polarity reversal defects similar to those observed in cul-2 mutants, suggesting that the two proteins function in the same pathways.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号