首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   373篇
  免费   23篇
  2023年   3篇
  2022年   6篇
  2021年   6篇
  2020年   6篇
  2019年   3篇
  2018年   5篇
  2017年   7篇
  2016年   13篇
  2015年   27篇
  2014年   19篇
  2013年   23篇
  2012年   28篇
  2011年   19篇
  2010年   18篇
  2009年   9篇
  2008年   21篇
  2007年   29篇
  2006年   18篇
  2005年   20篇
  2004年   23篇
  2003年   20篇
  2002年   13篇
  2001年   5篇
  2000年   7篇
  1999年   5篇
  1998年   3篇
  1997年   2篇
  1995年   5篇
  1994年   1篇
  1992年   5篇
  1991年   5篇
  1990年   4篇
  1989年   1篇
  1988年   4篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
  1963年   1篇
排序方式: 共有396条查询结果,搜索用时 21 毫秒
181.
N-Glycosylation has long been linked to protein folding and quality control in the endoplasmic reticulum (ER). Recent work has shown that O-linked glycosylation and the corresponding glycosyltransferases also participate in this important function. Notably, Protein O-fucosyltransferase 1 (Ofut1/Pofut1), a soluble, ER localized enzyme that fucosylates Epidermal Growth Factor-like (EGF) repeats, functions as a chaperone involved in the proper localization of the Notch receptor in certain contexts. Pofut2, a related enzyme that modifies Thrombospondin type I repeats (TSRs), has also been hypothesized to play a role in the folding and quality control of TSR-containing proteins. Both enzymes only modify fully folded substrates suggesting that they are able to distinguish between folded and unfolded structures. Pofuts have known physiological relevance and are conserved across metazoans. Though consensus sequences for O-fucosylation have been established and structures of both Pofuts have been studied, the mechanism of how they participate in protein folding is not known. This article discusses past and recent advances made in novel roles for these protein O-glycosyltransferases.  相似文献   
182.
A packed bed bioreactor (PBBR) was developed for rapid establishment of nitrification in brackish water hatchery systems in the tropics. The reactors were activated by immobilizing ammonia-oxidizing (AMONPCU-1) and nitrite-oxidizing (NIONPCU-1) bacterial consortia on polystyrene and low-density polyethylene beads, respectively. Fluorescence in situ hybridization demonstrated the presence of autotrophic nitrifiers belong to Nitrosococcus mobilis, lineage of β ammonia oxidizers and nitrite oxidizer Nitrobacter sp. in the consortia. The activated reactors upon integration to the hatchery system resulted in significant ammonia removal (P < 0.01) culminating to its undetectable levels. Consequently, a significantly higher percent survival of larvae was observed in the larval production systems. With spent water the reactors could establish nitrification with high percentage removal of ammonia (78%), nitrite (79%) and BOD (56%) within 7 days of initiation of the process. PBBR is configured in such a way to minimize the energy requirements for continuous operation by limiting the energy inputs to a single stage pumping of water and aeration to the aeration cells. The PBBR shall enable hatchery systems to operate under closed recirculating mode and pave the way for better water management in the aquaculture industry.  相似文献   
183.
The state of chromatin in human embryonic stem (hES) cells is a key factor determining stem cell identity. The non-histone chromatin-associated factor HMGA2 has been studied mostly in the mouse where its function seems critical for embryonic cell growth and adipocytic cell differentiation. Here we show that HMGA2 is highly expressed in two undifferentiated human embryonic stem cell lines at a level of at least 10(5) copies per individual stem cell. Interestingly, expression is further upregulated by a factor of three at day 7 of embryoid body formation, before it quickly drops to or below the level found in undifferentiated cells. We also show that HMGA2 is stably associated with inter- and metaphase hES cell chromatin, and that up to 12 HMGA2 protomers stably associate in vitro with a single nucleosome core particle of known atomic structure. Our data lend support to the possibility that HMGA2 interacts with nucleosomes in a way that imposes a global effect on the state of ES cell chromatin, which may contribute to the establishment of both ES cell identity and the initiation of specific differentiation programs.  相似文献   
184.
The development of macrophages from myeloid progenitor cells is primarily controlled by the growth factor colony stimulating factor-1 (CSF-1) and its cognate receptor, a transmembrane tyrosine kinase encoded by the c-Fms proto-oncogene. The CSF-1 receptor exerts its biological effects on cells via a range of signaling proteins including Erk1/2 and Akt. Here we have investigated the potential involvement of the Src-like adapter protein (SLAP-2) in signaling by the CSF-1 receptor in mouse bone marrow-derived macrophages. RT-PCR analysis revealed constitutive expression of the SLAP-2 gene in bone marrow macrophages. Surprisingly, co-immunoprecipitation and GST binding experiments demonstrated that the CSF-1 receptor could bind to SLAP-2 in a ligand-independent manner. Furthermore, the binding of SLAP-2 to the CSF-1 receptor involved multiple domains of SLAP-2. SLAP-2 also bound c-Cbl, with the interaction being mediated, at least in part, by the unique C-terminal domain of SLAP-2. Overexpression of SLAP-2 in bone marrow macrophages partially suppressed the CSF-1-induced tyrosine phosphorylation and/or expression level of a approximately 80 kDa protein without affecting CSF-1-induced global tyrosine phosphorylation, or activation of Akt or Erk1/2. Significantly, CSF-1 stimulation induced serine phosphorylation of SLAP-2. Pharmacologic inhibition of specific protein kinases revealed that CSF-1-induced phosphorylation of SLAP-2 was dependent on JNK activity. Taken together, our results suggest that SLAP-2 could potentially be involved in signaling by the CSF-1 receptor.  相似文献   
185.
Protein Z-dependent protease inhibitor (ZPI) and antithrombin III (AT3) are members of the serpin superfamily of protease inhibitors that inhibit factor Xa (FXa) and other proteases in the coagulation pathway. While experimental structural information is available for the interaction of AT3 with FXa, at present there is no structural data regarding the interaction of ZPI with FXa, and the precise role of this interaction in the blood coagulation pathway is poorly understood. In an effort to gain a structural understanding of this system, we have built a solvent equilibrated three-dimensional structural model of the Michaelis complex of human ZPI/FXa using homology modeling, protein–protein docking and molecular dynamics simulation methods. Preliminary analysis of interactions at the complex interface from our simulations suggests that the interactions of the reactive center loop (RCL) and the exosite surface of ZPI with FXa are similar to those observed from X-ray crystal structure-based simulations of AT3/FXa. However, detailed comparison of our modeled structure of ZPI/FXa with that of AT3/FXa points to differences in interaction specificity at the reactive center and in the stability of the inhibitory complex, due to the presence of a tyrosine residue at the P1 position in ZPI, instead of the P1 arginine residue in AT3. The modeled structure also shows specific structural differences between AT3 and ZPI in the heparin-binding and flexible N-terminal tail regions. Our structural model of ZPI/FXa is also compatible with available experimental information regarding the importance for the inhibitory action of certain basic residues in FXa. Figure Solvent equilibrated models for protein z-dependent protease inhibitor and its initial reactive complex with coagulation factor Xa (show here) are developed. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. V.C. and C.J.L. contributed equally to this work. The solvent-equilibrated PDB structure of the ZPI/FXa will be made available upon request. Conflict of interest statement  The authors state that they have no conflict of interest.  相似文献   
186.
The dengue virus (DENV) NS3 protein is essential for viral polyprotein processing and RNA replication. It contains an N-terminal serine protease region (residues 1–168) joined to an RNA helicase (residues 180–618) by an 11-amino acid linker (169–179). The structure at 3.15 Å of the soluble NS3 protein from DENV4 covalently attached to 18 residues of the NS2B cofactor region (NS2B18NS3) revealed an elongated molecule with the protease domain abutting subdomains I and II of the helicase (Luo, D., Xu, T., Hunke, C., Grüber, G., Vasudevan, S. G., and Lescar, J. (2008) J. Virol. 82, 173–183). Unexpectedly, using similar crystal growth conditions, we observed an alternative conformation where the protease domain has rotated by ∼161° with respect to the helicase domain. We report this new crystal structure bound to ADP-Mn2+ refined to a resolution of 2.2 Å. The biological significance for interdomain flexibility conferred by the linker region was probed by either inserting a Gly residue between Glu173 and Pro174 or replacing Pro174 with a Gly residue. Both mutations resulted in significantly lower ATPase and helicase activities. We next increased flexibility in the linker by introducing a Pro176 to Gly mutation in a DENV2 replicon system. A 70% reduction in luciferase reporter signal and a similar reduction in the level of viral RNA synthesis were observed. Our results indicate that the linker region has evolved to an optimum length to confer flexibility to the NS3 protein that is required both for polyprotein processing and RNA replication.  相似文献   
187.
A truncated form of the Ti-plasmid virE2 gene from Agrobacterium tumefaciens strains C58 and A6, and A. vitis strain CG450 was transferred and expressed in somatic embryos of grapevine rootstocks 110 Richter (Vitis rupestris × V. berlandieri), 3309 Couderc (V. rupestris × V. riparia) and Teleki 5C (V. berlandieri × V. riparia) via Agrobacterium-mediated transformation to confer resistance to crown gall disease. Transformation was confirmed in 98% of the 322 lines by enzyme-linked immunosorbent assay for the neomycin phosphotransferase II protein and 97% of 295 lines by polymerase chain reaction for the truncated virE2 transgene. Southern blot analysis revealed the insertion of truncated virE2 at one to three loci in a subset of seven transgenic 110 Richter lines. In vitro resistance screening assays based on inoculations of shoot internode sections showed reduced tumorigenicity and very small galls in 23 of 154 transgenic lines. Non-transformed controls had a 100% tumorigenicity rate with very large galls. Disease resistance assay at the whole plant level in the greenhouse revealed seven transgenic lines (3 lines of 110 Richter, 2 lines of 3309 Couderc and 2 lines of Teleki 5C) were resistant to A. tumefaciens strain C58 and A. vitis strains TM4 and CG450 with a substantially reduced percentage of inoculation sites showing gall as compared to controls. No association was found between the level of resistance to crown gall disease and the source Agrobacterium strain of virE2. Taken together, our data showed that resistance to crown gall disease can be achieved by expressing a truncated form of virE2 in grapevines.  相似文献   
188.
A series of 2-amino-5-benzoyl-4-phenylthiazole derivatives was investigated in radioligand binding studies at adenosine receptor (AdoR) subtypes with the goal to obtain potent and A1-selective antagonists. Acylation of the 2-amino group was found to be crucial for high A1 affinity. The best compound of the present series was 2-benzoylamino-5-p-methylbenzoyl-4-phenylthiazole (16m) showing a Ki value of 4.83 nM at rat and 57.4 nM at human A1 receptors combined with high selectivity versus the other AdoR subtypes. The compound behaved as an antagonist in GTP shift assays at A1 receptors. Compound 16m may serve as a new lead structure for the development of second-generation non-xanthine-derived A1 antagonists which have potential as novel drugs.  相似文献   
189.
190.
Molecular Biology Reports - The emergence of multi drug resistant clone CC320 serotype19F/19A and their capsular (cps) antigenic variants due to selective pressures such as vaccine had been...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号