首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   372篇
  免费   23篇
  2023年   3篇
  2022年   5篇
  2021年   6篇
  2020年   6篇
  2019年   3篇
  2018年   5篇
  2017年   7篇
  2016年   13篇
  2015年   27篇
  2014年   19篇
  2013年   23篇
  2012年   28篇
  2011年   19篇
  2010年   18篇
  2009年   9篇
  2008年   21篇
  2007年   29篇
  2006年   18篇
  2005年   20篇
  2004年   23篇
  2003年   20篇
  2002年   13篇
  2001年   5篇
  2000年   7篇
  1999年   5篇
  1998年   3篇
  1997年   2篇
  1995年   5篇
  1994年   1篇
  1992年   5篇
  1991年   5篇
  1990年   4篇
  1989年   1篇
  1988年   4篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
  1963年   1篇
排序方式: 共有395条查询结果,搜索用时 656 毫秒
11.
In plants, transient changes in calcium concentrations of cytosol have been observed during stress conditions like high salt, drought, extreme temperature and mechanical disturbances. Calcium-dependent protein kinases (CDPKs) play important roles in relaying these calcium signatures into downstream effects. In this study, a stress-responsive CDPK gene, ZoCDPK1 was isolated from a stress cDNA generated from ginger using rapid amplification of cDNA ends (RLM-RACE) – PCR technique and characterized its role in stress tolerance. An important aspect seen during the analysis of the deduced protein is a rare coupling between the presence of a nuclear localization sequence in the junction domain and consensus sequence in the EF-hand loops of calmodulin-like domain. ZoCDPK1 is abundantly expressed in rhizome and is rapidly induced by high-salt stress, drought, and jasmonic acid treatment but not by low temperature stress or abscissic acid treatment. The sub-cellular localization of ZoCDPK1-GFP fusion protein was studied in transgenic tobacco epidermal cells using confocal laser scanning microscopy. Over-expression of ginger CDPK1 gene in tobacco conferred tolerance to salinity and drought stress as reflected by the high percentage of seed germination, higher relative water content, expression of stress responsive genes, higher leaf chlorophyll content, increased photosynthetic efficiency and other photosynthetic parameters. In addition, transgenic tobacco subjected to salinity/drought stress exhibited 50% more growth during stress conditions as compared to wild type plant during normal conditions. T3 transgenic plants are able to grow to maturity, flowers early and set viable seeds under continuous salinity or drought stress without yield penalty. The ZoCDPK1 up-regulated the expression levels of stress-related genes RD21A and ERD1 in tobacco plants. These results suggest that ZoCDPK1 functions in the positive regulation of the signaling pathways that are involved in the response to salinity and drought stress in ginger and it is likely operating in a DRE/CRT independent manner.  相似文献   
12.
Toxicity and bioremediation of pesticides in agricultural soil   总被引:5,自引:0,他引:5  
Pesticides are one of the persistent organic pollutants which are of concern due to their occurrence in various ecosystems. In nature, the pesticide residues are subjected to physical, chemical and biochemical degradation process, but because of its high stability and water solubility, the pesticide residues persist in the environment. Moreover, the prevailing environmental conditions like the soil characteristics also contribute for their persistence. Bioremediation is one of the options for the removal of pesticides from environment. One important uncertainty associated with the implementation of bioremediation is the low bioavailability of some of the pesticides in the heterogeneous subsurface environment. Bioavailability of a compound depends on numerous factors within the cells of microorganism like the transportation of susbstrate across cell membrane, enzymatic reactions, biosurfactant production etc. as well as environment conditions such as pH, temperature, availability of electron acceptor etc. Pesticides like dichlorodiphenyltrichloroethane (DDT), hexachlorocyclohexane (HCH), Endosulfan, benzene hexa chloride (BHC), Atrazine etc. are such ubiquitous compounds which persist in soil and sediments due to less bioavailability. The half life of such less bioavailable pesticides ranges from 100 to 200 days. Most of these residues get adsorbed to soil particles and thereby becomes unavailable to microbes. In this review, an attempt has been made to present a brief idea on ‘major limitations in pesticide biodegradation in soil’ highlighting a few studies.  相似文献   
13.
14.
Neuroblastoma (NB) is a common pediatric cancer and contributes to more than 15% of all pediatric cancer-related deaths. Unlike adult tumors, recurrent somatic mutations in NB, such as tumor protein 53 (p53) mutations, occur with relative paucity. In addition, p53 downstream function is intact in NB cells with wild-type p53, suggesting that reactivation of p53 may be a viable therapeutic strategy for NB treatment. Herein, we report that the ubiquitin-specific protease 7 (USP7) inhibitor, P22077, potently induces apoptosis in NB cells with an intact USP7-HDM2-p53 axis but not in NB cells with mutant p53 or without human homolog of MDM2 (HDM2) expression. In this study, we found that P22077 stabilized p53 by inducing HDM2 protein degradation in NB cells. P22077 also significantly augmented the cytotoxic effects of doxorubicin (Dox) and etoposide (VP-16) in NB cells with an intact USP7-HDM2-p53 axis. Moreover, P22077 was found to be able to sensitize chemoresistant LA-N-6 NB cells to chemotherapy. In an in vivo orthotopic NB mouse model, P22077 significantly inhibited the xenograft growth of three NB cell lines. Database analysis of NB patients shows that high expression of USP7 significantly predicts poor outcomes. Together, our data strongly suggest that targeting USP7 is a novel concept in the treatment of NB. USP7-specific inhibitors like P22077 may serve not only as a stand-alone therapy but also as an effective adjunct to current chemotherapeutic regimens for treating NB with an intact USP7-HDM2-p53 axis.  相似文献   
15.
Dengue virus (DENV) is one of the most important arthropod-borne pathogens that cause life-threatening diseases in humans. However, no vaccine or specific antiviral is available for dengue. As seen in other RNA viruses, the innate immune system plays a key role in controlling DENV infection and disease outcome. Although the interferon (IFN) response, which is central to host protective immunity, has been reported to limit DENV replication, the molecular details of how DENV infection is modulated by IFN treatment are elusive. In this study, by employing a gain-of-function screen using a type I IFN-treated cell-derived cDNA library, we identified a previously uncharacterized gene, C19orf66, as an IFN-stimulated gene (ISG) that inhibits DENV replication, which we named Repressor of yield of DENV (RyDEN). Overexpression and gene knockdown experiments revealed that expression of RyDEN confers resistance to all serotypes of DENV in human cells. RyDEN expression also limited the replication of hepatitis C virus, Kunjin virus, Chikungunya virus, herpes simplex virus type 1, and human adenovirus. Importantly, RyDEN was considered to be a crucial effector molecule in the IFN-mediated anti-DENV response. When affinity purification-mass spectrometry analysis was performed, RyDEN was revealed to form a complex with cellular mRNA-binding proteins, poly(A)-binding protein cytoplasmic 1 (PABPC1), and La motif-related protein 1 (LARP1). Interestingly, PABPC1 and LARP1 were found to be positive modulators of DENV replication. Since RyDEN influenced intracellular events on DENV replication and, suppression of protein synthesis from DENV-based reporter construct RNA was also observed in RyDEN-expressing cells, our data suggest that RyDEN is likely to interfere with the translation of DENV via interaction with viral RNA and cellular mRNA-binding proteins, resulting in the inhibition of virus replication in infected cells.  相似文献   
16.
Adenylyltransferase is a bifunctional enzyme that controls the enzymatic activity of dodecameric glutamine synthetase in Escherichia coli by reversible adenylylation and deadenylylation. Previous studies showed that the two similar but chemically distinct reactions are carried out by separate domains within adenylyltransferase. The N-terminal domain carries the deadenylylation activity, and the C-terminal domain carries the adenylylation activity [Jaggi R, van Heeswijk WC, Westerhoff HV, Ollis DL & Vasudevan SG (1997) EMBO J16, 5562-5571]. In this study, we further map the domain junctions of adenylyltransferase on the basis of solubility and enzymatic analysis of truncation constructs, and show for the first time that adenylyltransferase has three domains: the two activity domains and a central, probably regulatory (R), domain connected by interdomain Q-linkers (N-Q1-R-Q2-C). The various constructs, which have the opposing domain and or central domain removed, all retain their activity in the absence of their respective nitrogen status indicator, i.e. PII or PII-UMP. A panel of mAbs to adenylyltransferase was used to demonstrate that the cellular nitrogen status indicators, PII and PII-UMP, probably bind in the central regulatory domain to stimulate the adenylylation and deadenylylation reactions, respectively. In the light of these results, intramolecular signaling within adenylyltransferase is discussed.  相似文献   
17.
18.
Abstract The subcellular distribution of the soluble flavohaemoglobin (HMP) of Escherichia coli has been determined. Cells over-expressing HMP from the cloned hmp gene on a multicopy plasmid were fractionated by osmotic shock and lysozyme treatment. Spectral analysis of subcellular fractions showed the CO-binding haemoprotein to be cytoplasmic. However, Western blotting using antibody raised to purified HMP revealed approximately 30% of the protein to be periplasmic in the over-expressing strain. Western analysis also revealed substantial levels of periplasmic HMP in a strain expressing only chromosomally encoded protein but none in an hmp mutant. The results are discussed in relation to protein function and the similar distribution reported for Vitreoscilla globin.  相似文献   
19.
20.
Lipases from different sources (porcine pancreas, Mucor miehei and Candida antarctica B) were covalently immobilized on a hydrophilic polyurethane composite (CoFoam). Their hydrolytic activities assayed with tributyrin were 0.55, 2.1 and 447 U g(-1), respectively. The activity of the C. antarctica B composite in the synthesis of methyl oleate in hexane was 8.8 U g(-1) compared to 60.6 U g(-1) for commercial Novozyme 435. The advantage of the CoFoam composite lies in the low pressure drop in a packed-bed reactor at fairly large flow rates. For example, at flow rates of 10-12 l min(-1), the pressure drop over 15 cm is typically 3 kPa.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号