首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   11篇
  2021年   2篇
  2019年   1篇
  2016年   4篇
  2015年   3篇
  2014年   2篇
  2013年   6篇
  2012年   4篇
  2011年   3篇
  2010年   6篇
  2009年   3篇
  2008年   3篇
  2007年   6篇
  2006年   10篇
  2005年   4篇
  2004年   6篇
  2003年   5篇
  2002年   9篇
  2000年   3篇
  1998年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
排序方式: 共有85条查询结果,搜索用时 62 毫秒
51.
Neurodegenerative disease can originate from the misfolding and aggregation of proteins, such as Amyloid-beta, SOD1, or Huntingtin. Fortunately, all cells possess protein quality control machinery that sequesters misfolded proteins, either refolding or degrading them, before they can self-associate into proteotoxic oligomers and aggregates. This activity is largely performed by the stress response chaperones (i.e., Hsp70). However, the expression level of molecular chaperones varies widely among cell types. To understand the potential consequence of this variation, we studied the process of protein aggregation in the presence of molecular chaperones using mathematical modeling. We demonstrate that protein aggregation, in the presence of molecular chaperones, is a bistable process. Bistability in protein aggregation offers an explanation for threshold transitions to high aggregate concentration, which are observed both in vitro and in vivo. Additionally, we show that slight variations in chaperone concentration, due to natural fluctuations, have important consequences in a bistable system for the onset of protein aggregation. Therefore, our results offer a possible theoretical explanation for neuronal vulnerability observed in vivo and the onset of neurodegenerative phenotypes in neurons lacking an effective heat-shock response.  相似文献   
52.
53.
The heterologous biosynthesis of complex polyketides in Escherichia coli was recently achieved through metabolic engineering. However, it was observed that less than 10% of the propionate carbon source is transformed into the erythromycin precursor, 6-deoxyerythronolide B (6dEB), resulting in a 1.4% molar yield. Therefore, metabolic flux analysis was performed using a model of the Escherichia coli metabolism with the addition of the enzymes required for 6dEB synthesis. The analysis shows that the maximum theoretical yield for 6dEB synthesis in E. coli is 11%. The maintenance energy requirement of E. coli and limitations in the specific oxygen uptake rate can further decrease the yield, suggesting that the observed 6dEB yield of 1.4% can be the result of these two factors. In addition, the results suggest that an increase in the specific carbon and oxygen uptake rates will increase the yield of 6dEB. The use of glucose as an alternative carbon source was also evaluated using metabolic flux analysis and the results suggest that the choice of glucose as the carbon source will allow a small improvement in performance relative to a propionate-based process.  相似文献   
54.
Microbial production of desired compounds provides an efficient framework for the development of renewable energy resources. To be competitive to traditional chemistry, one requirement is to utilize the full capacity of the microorganism to produce target compounds with high yields and turnover rates. We use integrated computational methods to generate and quantify the performance of novel biosynthetic routes that contain highly optimized catalysts. Engineering a novel reaction pathway entails addressing feasibility on multiple levels, which involves handling the complexity of large-scale biochemical networks while respecting the critical chemical phenomena at the atomistic scale. To pursue this multi-layer challenge, our strategy merges knowledge-based metabolic engineering methods with computational chemistry methods. By bridging multiple disciplines, we provide an integral computational framework that could accelerate the discovery and implementation of novel biosynthetic production routes. Using this approach, we have identified and optimized a novel biosynthetic route for the production of 3HP from pyruvate.  相似文献   
55.
Many important problems in cell biology arise from the dense nonlinear interactions between functional modules. The importance of mathematical modelling and computer simulation in understanding cellular processes is now indisputable and widely appreciated. Genome-scale metabolic models have gained much popularity and utility in helping us to understand and test hypotheses about these complex networks. However, there are some caveats that come with the use and interpretation of different types of metabolic models, which we aim to highlight here. We discuss and illustrate how the integration of thermodynamic and kinetic properties of the yeast metabolic networks in network analyses can help in understanding and utilizing this organism more successfully in the areas of metabolic engineering, synthetic biology and disease treatment.  相似文献   
56.
Microorganisms provide a wealth of biodegradative potential in the reduction and elimination of xenobiotic compounds in the environment. One useful metric to evaluate potential biodegradation pathways is thermodynamic feasibility. However, experimental data for the thermodynamic properties of xenobiotics is scarce. The present work uses a group contribution method to study the thermodynamic properties of the University of Minnesota Biocatalysis/Biodegradation Database. The Gibbs free energies of formation and reaction are estimated for 914 compounds (81%) and 902 reactions (75%), respectively, in the database. The reactions are classified based on the minimum and maximum Gibbs free energy values, which accounts for uncertainty in the free energy estimates and a feasible concentration range relevant to biodegradation. Using the free energy estimates, the cumulative free energy change of 89 biodegradation pathways (51%) in the database could be estimated. A comparison of the likelihood of the biotransformation rules in the Pathway Prediction System and their thermodynamic feasibility was then carried out. This analysis revealed that when evaluating the feasibility of biodegradation pathways, it is important to consider the thermodynamic topology of the reactions in the context of the complete pathway. Group contribution is shown to be a viable tool for estimating, a priori, the thermodynamic feasibility and the relative likelihood of alternative biodegradation reactions. This work offers a useful tool to a broad range of researchers interested in estimating the feasibility of the reactions in existing or novel biodegradation pathways. Biotechnol. Bioeng. 2009;103: 532–541. © 2009 Wiley Periodicals, Inc.  相似文献   
57.
As increasing amounts of anthropogenic chemicals are released into the environment, it is vital to human health and the preservation of ecosystems to evaluate the fate of these chemicals in the environment. It is useful to predict whether a particular compound is biodegradable and if alternate routes can be engineered for compounds already known to be biodegradable. In this work, we describe a computational framework (called BNICE) that can be used for the prediction of novel biodegradation pathways of xenobiotics. The framework was applied to 4‐chlorobiphenyl, phenanthrene, γ‐hexachlorocyclohexane, and 1,2,4‐trichlorobenzene, compounds representing various classes of xenobiotics with known biodegradation routes. BNICE reproduced the proposed biodegradation routes found experimentally, and in addition, it expanded the biodegradation reaction networks through the generation of novel compounds and reactions. The novel reactions involved in the biodegradation of 1,2,4‐trichlorobenzene were studied in depth, where pathway and thermodynamic analyses were performed. This work demonstrates that BNICE can be applied to generate novel pathways to degrade xenobiotic compounds that are thermodynamically feasible alternatives to known biodegradation routes and attractive targets for metabolic engineering. Biotechnol. Bioeng. 2009; 104: 1086–1097. © 2009 Wiley Periodicals, Inc.  相似文献   
58.
A new species of the genus Paralomis, Paralomis elongata, has been collected from the Spiess seamount near Bouvet Island in the Southern Ocean. The species shows close affinity with P. anamerae Macpherson, 1988, from the Patagonian Shelf, P. africana Macpherson, 1987, from the south-western African shelf, and P. aculeata Henderson, 1888, from Crozet Islands. Morphological differences among the species and ecological characteristics are discussed.  相似文献   
59.
Standard bioprocess conditions have been widely applied for the microbial conversion of raw material to essential industrial products. Successful metabolic engineering (ME) strategies require a comprehensive framework to manage the complexity embedded in cellular metabolism, to explore the impacts of bioprocess conditions on the cellular responses, and to deal with the uncertainty of the physiochemical parameters. We have recently developed a computational and statistical framework that is based on Metabolic Control Analysis and uses a Monte Carlo method to simulate the uncertainty in the values of the system parameters [Wang, L., Birol, I., Hatzimanikatis, V., 2004. Metabolic control analysis under uncertainty: framework development and case studies. Biophys. J. 87(6), 3750-3763]. In this work, we generalize this framework to incorporate the central cellular processes, such as cell growth, and different bioprocess conditions, such as different types of bioreactors. The framework provides the mathematical basis for the quantification of the interactions between intracellular metabolism and extracellular conditions, and it is readily applicable to the identification of optimal ME targets for the improvement of industrial processes [Wang, L., Hatzimanikatis, V., 2005. Metabolic engineering under uncertainty. II: analysis of yeast metabolism. Submitted].  相似文献   
60.
Information about the enzyme kinetics in a metabolic network will enable understanding of the function of the network and quantitative prediction of the network responses to genetic and environmental perturbations. Despite recent advances in experimental techniques, such information is limited and existing experimental data show extensive variation and they are based on in vitro experiments. In this article, we present a computational framework based on the well-established (log)linear formalism of metabolic control analysis. The framework employs a Monte Carlo sampling procedure to simulate the uncertainty in the kinetic data and applies statistical tools for the identification of the rate-limiting steps in metabolic networks. We applied the proposed framework to a branched biosynthetic pathway and the yeast glycolysis pathway. Analysis of the results allowed us to interpret and predict the responses of metabolic networks to genetic and environmental changes, and to gain insights on how uncertainty in the kinetic mechanisms and kinetic parameters propagate into the uncertainty in predicting network responses. Some of the practical applications of the proposed approach include the identification of drug targets for metabolic diseases and the guidance for design strategies in metabolic engineering for the purposeful manipulation of the metabolism of industrial organisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号