首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   11篇
  2021年   2篇
  2019年   1篇
  2016年   4篇
  2015年   3篇
  2014年   2篇
  2013年   6篇
  2012年   4篇
  2011年   3篇
  2010年   6篇
  2009年   3篇
  2008年   3篇
  2007年   6篇
  2006年   10篇
  2005年   4篇
  2004年   6篇
  2003年   5篇
  2002年   9篇
  2000年   3篇
  1998年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
排序方式: 共有85条查询结果,搜索用时 187 毫秒
31.
32.
Genomic and proteomic data were integrated into the proteogenomic workflow to identify coding genomic variants of Human Embryonic Kidney 293 (HEK‐293) cell line at the proteome level. Shotgun proteome data published by Geiger et al. (2012), Chick et al. (2015), and obtained in this work for HEK‐293 were searched against the customized genomic database generated using exome data published by Lin et al. (2014). Overall, 112 unique variants were identified at the proteome level out of ~1200 coding variants annotated in the exome. Seven identified variants were shared between all the three considered proteomic datasets, and 27 variants were found in any two datasets. Some of the found variants belonged to widely known genomic polymorphisms originated from the germline, while the others were more likely resulting from somatic mutations. At least, eight of the proteins bearing amino acid variants were annotated as cancer‐related ones, including p53 tumor suppressor. In all the considered shotgun datasets, the variant peptides were at the ratio of 1:2.5 less likely being identified than the wild‐type ones compared with the corresponding theoretical peptides. This can be explained by the presence of the so‐called “passenger” mutations in the genes, which were never expressed in HEK‐293 cells. All MS data have been deposited in the ProteomeXchange with the dataset identifier PXD002613 ( http://proteomecentral.proteomexchange.org/dataset/PXD002613 ).  相似文献   
33.
Sustainable microbial production of high‐value organic compounds such as 3‐hydroxypropanoate (3HP) is becoming an increasingly attractive alternative to organic syntheses that utilize petrochemical feedstocks. We applied the Biochemical Network Integrated Computational Explorer (BNICE) framework to the automated design and evaluation of novel biosynthetic routes for the production of 3HP from pyruvate. Among the pathways generated by the BNICE framework were all of the known pathways for the production of 3HP as well as numerous novel pathways. The pathways generated by BNICE were ranked based on four criteria: pathway length, thermodynamic feasibility, maximum achievable yield to 3HP from glucose, and maximum achievable activity at which 3HP can be produced. Four pathways emerged from this ranking as the most promising for the biosynthesis of 3HP, and three of these pathways, including the shortest pathways discovered, were novel. We also discovered novel routes for the biosynthesis of 28 commercially available compounds that are currently produced exclusively through organic synthesis. Examination of the optimal pathways for the biosynthesis of these 28 compounds in E. coli revealed pyruvate and succinate to be ideal intermediates for achieving high product yields from glucose. Biotechnol. Bioeng. 2010; 106: 462–473. © 2010 Wiley Periodicals, Inc.  相似文献   
34.
35.
Genome-scale metabolic models are an invaluable tool for analyzing metabolic systems as they provide a more complete picture of the processes of metabolism. We have constructed a genome-scale metabolic model of Escherichia coli based on the iJR904 model developed by the Palsson Laboratory at the University of California at San Diego. Group contribution methods were utilized to estimate the standard Gibbs free energy change of every reaction in the constructed model. Reactions in the model were classified based on the activity of the reactions during optimal growth on glucose in aerobic media. The most thermodynamically unfavorable reactions involved in the production of biomass in E. coli were identified as ATP phosphoribosyltransferase, ATP synthase, methylene-tetra-hydrofolate dehydrogenase, and tryptophanase. The effect of a knockout of these reactions on the production of biomass and the production of individual biomass precursors was analyzed. Changes in the distribution of fluxes in the cell after knockout of these unfavorable reactions were also studied. The methodologies and results discussed can be used to facilitate the refinement of the feasible ranges for cellular parameters such as species concentrations and reaction rate constants.  相似文献   
36.
Standard proteomics methods allow the relative quantitation of levels of thousands of proteins in two or more samples. While such methods are invaluable for defining the variations in protein concentrations which follow the perturbation of a biological system, they do not offer information on the mechanisms underlying such changes. Expanding on previous work [1], we developed a pulse-chase (pc) variant of SILAC (stable isotope labeling by amino acids in cell culture). pcSILAC can quantitate in one experiment and for two conditions the relative levels of proteins newly synthesized in a given time as well as the relative levels of remaining preexisting proteins. We validated the method studying the drug-mediated inhibition of the Hsp90 molecular chaperone, which is known to lead to increased synthesis of stress response proteins as well as the increased decay of Hsp90 “clients”. We showed that pcSILAC can give information on changes in global cellular proteostasis induced by treatment with the inhibitor, which are normally not captured by standard relative quantitation techniques. Furthermore, we have developed a mathematical model and computational framework that uses pcSILAC data to determine degradation constants kd and synthesis rates Vs for proteins in both control and drug-treated cells. The results show that Hsp90 inhibition induced a generalized slowdown of protein synthesis and an increase in protein decay. Treatment with the inhibitor also resulted in widespread protein-specific changes in relative synthesis rates, together with variations in protein decay rates. The latter were more restricted to individual proteins or protein families than the variations in synthesis. Our results establish pcSILAC as a viable workflow for the mechanistic dissection of changes in the proteome which follow perturbations. Data are available via ProteomeXchange with identifier PXD000538.  相似文献   
37.
Mathematical modeling is an indispensable tool for research and development in biotechnology and bioengineering. The formulation of kinetic models of biochemical networks depends on knowledge of the kinetic properties of the enzymes of the individual reactions. However, kinetic data acquired from experimental observations bring along uncertainties due to various experimental conditions and measurement methods. In this contribution, we propose a novel way to model the uncertainty in the enzyme kinetics and to predict quantitatively the responses of metabolic reactions to the changes in enzyme activities under uncertainty. The proposed methodology accounts explicitly for mechanistic properties of enzymes and physico‐chemical and thermodynamic constraints, and is based on formalism from systems theory and metabolic control analysis. We achieve this by observing that kinetic responses of metabolic reactions depend: (i) on the distribution of the enzymes among their free form and all reactive states; (ii) on the equilibrium displacements of the overall reaction and that of the individual enzymatic steps; and (iii) on the net fluxes through the enzyme. Relying on this observation, we develop a novel, efficient Monte Carlo sampling procedure to generate all states within a metabolic reaction that satisfy imposed constrains. Thus, we derive the statistics of the expected responses of the metabolic reactions to changes in enzyme levels and activities, in the levels of metabolites, and in the values of the kinetic parameters. We present aspects of the proposed framework through an example of the fundamental three‐step reversible enzymatic reaction mechanism. We demonstrate that the equilibrium displacements of the individual enzymatic steps have an important influence on kinetic responses of the enzyme. Furthermore, we derive the conditions that must be satisfied by a reversible three‐step enzymatic reaction operating far away from the equilibrium in order to respond to changes in metabolite levels according to the irreversible Michelis–Menten kinetics. The efficient sampling procedure allows easy, scalable, implementation of this methodology to modeling of large‐scale biochemical networks. Biotechnol. Bioeng. 2011;108: 413–423. © 2010 Wiley Periodicals, Inc.  相似文献   
38.
Redox and energy balance plays a key role in determining microbial fitness. Efforts to redirect bacterial metabolism often involve overexpression and deletion of genes surrounding key central metabolites, such as pyruvate and acetyl-coA. In the case of metabolic engineering of Escherichia coli for succinate production, efforts have mainly focused on the manipulation of key pyruvate metabolizing enzymes. E. coli AFP111 strain lacking ldhA, pflB and ptsG encoded activities accumulates acetate and ethanol as well as shows poor anaerobic growth on rich and minimal media. To address these issues, we first deleted genes (adhE, ackA-pta) involved in byproduct formation downstream of acetyl-CoA followed by the deletion of iclR and pdhR to activate the glyoxylate pathway. Based on data from these studies, we hypothesized that the succinate productivity was limited by the insufficient ATP generation. Genome-scale thermodynamics-based flux balance analysis indicated that overexpression of ATP-forming PEPCK from Actinobacillus succinogenes in an ldhA, pflB and ptsG triple mutant strain could result in an increase in biomass and succinate flux. Testing of this prediction confirmed that PEPCK overexpression resulted in a 60% increase in biomass and succinate formation in the ldhA, pflB, ptsG mutant strain.  相似文献   
39.
40.
Translation is a central cellular process and the complexity of its mechanism necessitates mathematical frameworks to better understand system properties and make quantitative predictions. We have developed a gene sequence-specific mechanistic model for translation which accounts for all the elementary steps of translation elongation. Included in our model is the nonspecific binding of tRNAs to the ribosomal A site, and we find that the competitive, nonspecific binding of the tRNAs is the rate-limiting step in the elongation cycle for every codon. By introducing our model in terms of the Michaelis-Menten kinetic framework, we determine that these results are due to the tRNAs that do not recognize the ribosomal A site codon acting as competitive inhibitors to the tRNAs that do recognize the ribosomal A site codon. We present the results of a sensitivity analysis to determine the contribution of elongation cycle kinetic parameters of each codon on the overall translation rate, and observe that the translation rates of mRNAs are controlled by segments of rate-limiting codons that are sequence-specific. Along these lines, we find that the relative position of codons along the mRNA determines the optimal protein synthesis rate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号