首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   425篇
  免费   16篇
  2023年   2篇
  2022年   2篇
  2021年   4篇
  2020年   4篇
  2019年   3篇
  2018年   5篇
  2017年   4篇
  2016年   6篇
  2015年   13篇
  2014年   14篇
  2013年   19篇
  2012年   28篇
  2011年   27篇
  2010年   20篇
  2009年   20篇
  2008年   23篇
  2007年   26篇
  2006年   24篇
  2005年   24篇
  2004年   27篇
  2003年   26篇
  2002年   21篇
  2001年   8篇
  2000年   8篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1996年   5篇
  1995年   2篇
  1994年   4篇
  1993年   5篇
  1992年   7篇
  1991年   6篇
  1990年   7篇
  1989年   4篇
  1988年   8篇
  1987年   2篇
  1986年   6篇
  1985年   4篇
  1984年   3篇
  1982年   4篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
排序方式: 共有441条查询结果,搜索用时 31 毫秒
11.
Hypoxanthine-guanine phosphoribosyltransferase is a ubiquitous human enzyme, the inherited deficiency of which leads to a specific metabolic-neurological syndrome. Native acrylamide isoelectric focusing revealed that the human enzyme consists of different numbers of isoenzymes depending on the tissue of origin. The erythrocytic enzyme has the most isoenzymes while the enzyme from cultured fibroblasts has only a single isoenzyme. The isoenzyme pattern of the erythrocytic enzyme changes on storage of the crude hemolysate at 4 C. Treatment of the stored crude hemolysate with 4.5 m urea and 0.35 mm -mercaptoethanol results in an isoenzyme pattern similar to that of the fresh crude extract. Thus the additional isoenzymes are generated on storage not by covalent modification of the enzyme but probably by binding of small molecules to the enzyme or to association of the enzyme molecules. Hypoxanthine-guanine phosphoribosyltransferase has been purified to 80% homogeneity in three steps, DEAE Sephadex chromatography, heat treatment at 85 C for 5 min, and hydroxylapatite chromatography. Denaturing two-dimensional gel electrophoresis of the erythrocytic enzyme revealed that the erythrocytic enzyme is composed of three major types of subunits (1–3) with the same molecular weight but different isoelectric points. In contrast, the fibroblast enzyme is composed of only a single type of subunit, which comigrates with subunit 1 of the erythrocytic enzyme. Since there is a single genetic locus in humans for HGPRTase (the enzyme is X linked) (Nyhan et al., 1967), the observed subunit modification of the erythrocyte enzyme appears to be the result of posttranslational modification. These findings provide a simple explanation for the observed electrophoretic properties of human HGPRTase. A patient with 0.5% of HGPRTase activity in his erythrocytes was found to have small amounts (> 0.5% but < 5% of normal) of the erythrocytic HGPRTase subunits.This work was supported by a grant from NIAMDD, National Institutes of Health, United States Public Health Service. L. J. G. was supported by a fellowship from the National Institute of Child Health and Human Development. D. W. M. is an Investigator, Howard Hughes Medical Institute.  相似文献   
12.
In previous communications we have demonstrated that the subunits of normal human erythrocyte purine nucleoside phosphorylase can be resolved into four major (1–4) and two minor (1p and 2p) components with the same molecular weight but different apparent isoelectric points (and net ionic charge). The existence of subunits with different charge results in a complex isoelectric focusing pattern of the native erythrocytic enzyme. In contrast, the isoelectric focusing pattern of the native enzyme obtained from cultured human fibroblasts is simpler. The multiple native isoenzymes obtained from human erythrocytes and human brain have isoelectric points ranging from 5.0 to 6.4 and from 5.2 to 5.8, respectively, whereas cultured human fibroblasts have two major native isoenzymes with apparent isoelectric points of 5.1 and 5.6.Purine nucleoside phosphorylase has been purified at least a hundredfold from 35S-labeled cultured human fibroblasts. A two-dimensional electrophoretic analysis of the denatured purified normal fibroblast enzyme revealed that it consists mainly of subunit 1 (90%) with small amounts of subunits 2 (10%) and 3 (1%). This accounts for the observed differences between the native isoelectric focusing and the electrophoretic patterns of the erythrocyte and fibroblast enzymes. The purine nucleoside phosphorylase subunit 1 is detectable in the autoradiogram from a two-dimensional electrophoretic analysis of a crude, unpurified extract of 35S-labeled cultured normal human fibroblasts. The fibroblast phosphorylase coincides with the erythrocytic subunit 1 of the same enzyme, and the cultured fibroblasts of a purine nucleoside phosphorylase deficient patient (patient I) lack this protein component, genetically confirming the identity of the purine nucleoside phosphorylase subunit in cultured fibroblasts.This work was supported by a grant from the National Institute of Arthritis, Metabolism, and Digestive Diseases, National Institutes of Health, United States Public Health Service. L. J. G. is supported by a fellowship from the National Institute of Child Health and Human Development. D. W. M. is an Investigator, Howard Hughes Medical Institute.  相似文献   
13.
14.
Afforestation is considered a cost‐effective and readily available climate change mitigation option. In recent studies afforestation is presented as a major solution to limit climate change. However, estimates of afforestation potential vary widely. Moreover, the risks in global mitigation policy and the negative trade‐offs with food security are often not considered. Here we present a new approach to assess the economic potential of afforestation with the IMAGE 3.0 integrated assessment model framework. In addition, we discuss the role of afforestation in mitigation pathways and the effects of afforestation on the food system under increasingly ambitious climate targets. We show that afforestation has a mitigation potential of 4.9 GtCO2/year at 200 US$/tCO2 in 2050 leading to large‐scale application in an SSP2 scenario aiming for 2°C (410 GtCO2 cumulative up to 2100). Afforestation reduces the overall costs of mitigation policy. However, it may lead to lower mitigation ambition and lock‐in situations in other sectors. Moreover, it bears risks to implementation and permanence as the negative emissions are increasingly located in regions with high investment risks and weak governance, for example in Sub‐Saharan Africa. Afforestation also requires large amounts of land (up to 1,100 Mha) leading to large reductions in agricultural land. The increased competition for land could lead to higher food prices and an increased population at risk of hunger. Our results confirm that afforestation has substantial potential for mitigation. At the same time, we highlight that major risks and trade‐offs are involved. Pathways aiming to limit climate change to 2°C or even 1.5°C need to minimize these risks and trade‐offs in order to achieve mitigation sustainably.  相似文献   
15.
Lysophosphatidylcholine (LPC) and lysophosphatidic acid (LPA), the most prominent lysoglycerophospholipids, are emerging as a novel class of inflammatory lipids, joining thromboxanes, leukotrienes and prostaglandins with which they share metabolic pathways and regulatory mechanisms. Enzymes that participate in LPC and LPA metabolism, such as the phospholipase A2 superfamily (PLA2) and autotaxin (ATX, ENPP2), play central roles in regulating LPC and LPA levels and consequently their actions. LPC/LPA biosynthetic pathways will be briefly presented and LPC/LPA signaling properties and their possible functions in the regulation of the immune system and chronic inflammation will be reviewed. Furthermore, implications of exacerbated LPC and/or LPA signaling in the context of chronic inflammatory diseases, namely rheumatoid arthritis, multiple sclerosis, pulmonary fibrosis and hepatitis, will be discussed. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.  相似文献   
16.
We studied the significance of four hydrophobic residues within the 225–230 region of apoA-I on its structure and functions and their contribution to the biogenesis of HDL. Adenovirus-mediated gene transfer of an apoA-I[F225A/V227A/F229A/L230A] mutant in apoA-I−/− mice decreased plasma cholesterol, HDL cholesterol, and apoA-I levels. When expressed in apoA-I−/− × apoE−/− mice, approximately 40% of the mutant apoA-I as well as mouse apoA-IV and apoB-48 appeared in the VLDL/IDL/LDL. In both mouse models, the apoA-I mutant generated small spherical particles of pre-β- and α4-HDL mobility. Coexpression of the apoA-I mutant and LCAT increased and shifted the-HDL cholesterol peak toward lower densities, created normal αHDL subpopulations, and generated spherical-HDL particles. Biophysical analyses suggested that the apoA-I[225–230] mutations led to a more compact folding that may limit the conformational flexibility of the protein. The mutations also reduced the ability of apoA-I to promote ABCA1-mediated cholesterol efflux and to activate LCAT to 31% and 66%, respectively, of the WT control. Overall, the apoA-I[225–230] mutations inhibited the biogenesis of-HDL and led to the accumulation of immature pre-β- and α4-HDL particles, a phenotype that could be corrected by administration of LCAT.  相似文献   
17.
Periplasmic adaptor proteins are essential components of bacterial tripartite multidrug efflux pumps. Here we report the 2.35 Å resolution crystal structure of the BesA adaptor from the spirochete Borrelia burgdorferi solved using selenomethionine derivatized protein. BesA shows the archetypal linear, flexible, multi-domain architecture evident among proteobacteria and retains the lipoyl, β-barrel and membrane-proximal domains that interact with the periplasmic domains of the inner membrane transporter. However, it lacks the α-hairpin domain shown to establish extensive coiled-coil interactions with the periplasmic entrance helices of the outer membrane-anchored TolC exit duct. This has implications for the modelling of assembled tripartite efflux pumps.  相似文献   
18.
Germline mutations in the BRCA1 and BRCA2 genes contribute to approximately 18% of hereditary ovarian cancers conferring an estimated lifetime risk from 15% to 50%. A variable incidence of mutations has been reported for these genes in ovarian cancer cases from different populations. In Greece, six mutations in BRCA1 account for 63% of all mutations detected in both BRCA1 and BRCA2 genes. This study aimed to determine the prevalence of BRCA1 mutations in a Greek cohort of 106 familial ovarian cancer patients that had strong family history or metachronous breast cancer and 592 sporadic ovarian cancer cases. All 698 patients were screened for the six recurrent Greek mutations (including founder mutations c.5266dupC, p.G1738R and the three large deletions of exon 20, exons 23–24 and exon 24). In familial cases, the BRCA1 gene was consequently screened for exons 5, 11, 12, 20, 21, 22, 23, 24. A deleterious BRCA1 mutation was found in 43/106 (40.6%) of familial cancer cases and in 27/592 (4.6%) of sporadic cases. The variant of unknown clinical significance p.V1833M was identified in 9/698 patients (1.3%). The majority of BRCA1 carriers (71.2%) presented a high-grade serous phenotype. Identifying a mutation in the BRCA1 gene among breast and/or ovarian cancer families is important, as it enables carriers to take preventive measures. All ovarian cancer patients with a serous phenotype should be considered for genetic testing. Further studies are warranted to determine the prevalence of mutations in the rest of the BRCA1 gene, in the BRCA2 gene, and other novel predisposing genes for breast and ovarian cancer.  相似文献   
19.
The climate impact of bioenergy is commonly quantified in terms of CO2 equivalents, using a fixed 100‐year global warming potential as an equivalency metric. This method has been criticized for the inability to appropriately address emissions timing and the focus on a single impact metric, which may lead to inaccurate or incomplete quantification of the climate impact of bioenergy production. In this study, we introduce Dynamic Relative Climate Impact (DRCI) curves, a novel approach to visualize and quantify the climate impact of bioenergy systems over time. The DRCI approach offers the flexibility to analyze system performance for different value judgments regarding the impact category (e.g., emissions, radiative forcing, and temperature change), equivalency metric, and analytical time horizon. The DRCI curves constructed for fourteen bioenergy systems illustrate how value judgments affect the merit order of bioenergy systems, because they alter the importance of one‐time (associated with land use change emissions) versus sustained (associated with carbon debt or foregone sequestration) emission fluxes and short‐ versus long‐lived climate forcers. Best practices for bioenergy production (irrespective of value judgments) include high feedstock yields, high conversion efficiencies, and the application of carbon capture and storage. Furthermore, this study provides examples of production contexts in which the risk of land use change emissions, carbon debt, or foregone sequestration can be mitigated. For example, the risk of indirect land use change emissions can be mitigated by accompanying bioenergy production with increasing agricultural yields. Moreover, production contexts in which the counterfactual scenario yields immediate or additional climate impacts can provide significant climate benefits. This paper is accompanied by an Excel‐based calculation tool to reproduce the calculation steps outlined in this paper and construct DRCI curves for bioenergy systems of choice.  相似文献   
20.
Salmonellae employ two type III secretion systems (T3SSs), SPI1 and SPI2, to deliver virulence effectors into mammalian cells. SPI1 effectors, including actin-binding SipA, trigger initial bacterial uptake, whereas SPI2 effectors promote subsequent replication within customized Salmonella-containing vacuoles (SCVs). SCVs sequester actin filaments and subvert microtubule-dependent motors to migrate to the perinuclear region. We demonstrate that SipA delivery continues after Salmonella internalization, with dosage being restricted by host-mediated degradation. SipA is exposed on the cytoplasmic face of the SCV, from where it stimulates bacterial replication in both nonphagocytic cells and macrophages. Although SipA is sufficient to target and redistribute late endosomes, during infection it cooperates with the SPI2 effector SifA to modulate SCV morphology and ensure perinuclear positioning. Our findings define an unexpected additional function for SipA postentry and reveal precise intracellular communication between effectors deployed by distinct T3SSs underlying SCV biogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号