首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   535篇
  免费   47篇
  2024年   1篇
  2023年   4篇
  2022年   5篇
  2021年   10篇
  2020年   3篇
  2019年   4篇
  2018年   7篇
  2017年   6篇
  2016年   11篇
  2015年   23篇
  2014年   17篇
  2013年   36篇
  2012年   40篇
  2011年   38篇
  2010年   24篇
  2009年   24篇
  2008年   41篇
  2007年   30篇
  2006年   35篇
  2005年   26篇
  2004年   29篇
  2003年   23篇
  2002年   28篇
  2001年   21篇
  2000年   13篇
  1999年   15篇
  1998年   5篇
  1997年   5篇
  1996年   8篇
  1995年   3篇
  1994年   9篇
  1993年   3篇
  1992年   5篇
  1991年   5篇
  1990年   4篇
  1989年   4篇
  1988年   6篇
  1987年   6篇
  1986年   3篇
  1984年   1篇
  1983年   1篇
排序方式: 共有582条查询结果,搜索用时 406 毫秒
551.
Soils contain more carbon than plants or the atmosphere, and sensitivities of soil organic carbon (SOC) stocks to changing climate and plant productivity are a major uncertainty in global carbon cycle projections. Despite a consensus that microbial degradation and mineral stabilization processes control SOC cycling, no systematic synthesis of long-term warming and litter addition experiments has been used to test process-based microbe-mineral SOC models. We explored SOC responses to warming and increased carbon inputs using a synthesis of 147 field manipulation experiments and five SOC models with different representations of microbial and mineral processes. Model projections diverged but encompassed a similar range of variability as the experimental results. Experimental measurements were insufficient to eliminate or validate individual model outcomes. While all models projected that CO2 efflux would increase and SOC stocks would decline under warming, nearly one-third of experiments observed decreases in CO2 flux and nearly half of experiments observed increases in SOC stocks under warming. Long-term measurements of C inputs to soil and their changes under warming are needed to reconcile modeled and observed patterns. Measurements separating the responses of mineral-protected and unprotected SOC fractions in manipulation experiments are needed to address key uncertainties in microbial degradation and mineral stabilization mechanisms. Integrating models with experimental design will allow targeting of these uncertainties and help to reconcile divergence among models to produce more confident projections of SOC responses to global changes.  相似文献   
552.
Perception of complex sound is a process carried out in everyday life situations and contributes in the way one perceives reality. Attempting to explain sound perception and how it affects human beings is complicated. Physics of simple sound can be described as a function of frequency, amplitude and phase. Psychology of sound, also termed psychoacoustics, has its own distinct elements of pitch, intensity and tibre. An interconnection exists between physics and psychology of hearing.Music being a complex sound contributes to communication and conveys information with semantic and emotional elements. These elements indicate the involvement of the central nervous system through processes of integration and interpretation together with peripheral auditory processing.Effects of sound and music in human psychology and physiology are complicated. Psychological influences of listening to different types of music are based on the different characteristics of basic musical sounds. Attempting to explain music perception can be simpler if music is broken down to its basic auditory signals. Perception of auditory signals is analyzed by the science of psychoacoustics. Differences in complex sound perception have been found between normal subjects and psychiatric patients and between different types of psychopathologies.  相似文献   
553.
Lamellipodial protrusion is regulated by Ena/VASP proteins. We identified Lamellipodin (Lpd) as an Ena/VASP binding protein. Both proteins colocalize at the tips of lamellipodia and filopodia. Lpd is recruited to EPEC and Vaccinia, pathogens that exploit the actin cytoskeleton for their own motility. Lpd contains a PH domain that binds specifically to PI(3,4)P2, an asymmetrically localized signal in chemotactic cells. Lpd's PH domain can localize to ruffles in PDGF-treated fibroblasts. Lpd overexpression increases lamellipodial protrusion velocity, an effect observed when Ena/VASP proteins are overexpressed or artificially targeted to the plasma membrane. Conversely, knockdown of Lpd expression impairs lamellipodia formation, reduces velocity of residual lamellipodial protrusion, and decreases F-actin content. These phenotypes are more severe than loss of Ena/VASP, suggesting that Lpd regulates other effectors of the actin cytoskeleton in addition to Ena/VASP.  相似文献   
554.
This study shows that the accuracy of the quantification of genomic DNA by the commonly used Hoechst- and PicoGreen-based assays is drastically affected by its degree of fragmentation. Specifically, it was shown that these assays underestimate by 70% the concentration of double-stranded DNA (dsDNA) with sizes less than 23 kb. On the other hand, DNA sizes greater and less than approximately 23 kb are commonly characterized as intact and fragmented genomic DNA, respectively, by the agarose electrophoresis DNA smearing assay and are evaluated only qualitatively by this assay. The need for accurate quantification of fragmented and total genomic DNA, combined with the lack of specific, reliable, and simple quantitative methods, prompted us to develop a Hoechst/PicoGreen-based fluorescent assay that quantifies both types of DNA. This assay addresses these problems, and in its Hoechst and PicoGreen version it accurately quantifies dsDNA as being either intact (>or=23 kb) or fragmented (<23 kb) in concentrations as low as 3 ng ml-1 or 5 pg ml-1 with Hoechst or PicoGreen, respectively, as well as the individual fractions of intact/fragmented DNA existing in any proportions in a total DNA sample in concentrations as low as 10 ng ml-1 or 15 pg ml-1 with Hoechst or PicoGreen, respectively. Because the assay discriminates total genomic DNA in the two size ranges (>or=23 and <23 kb) and quantitates them, it is proposed as the quantitative replacement of the agarose gel electrophoresis genomic DNA smearing assay.  相似文献   
555.
Microglia are the primary resident immune cells in the retina. They regulate neuronal survival and synaptic pruning making them essential for normal development. Following injury, they mediate adaptive responses and under pathological conditions they can trigger neurodegeneration exacerbating the effect of a disease. Retinal organoids derived from human induced pluripotent stem cells (hiPSCs) are increasingly being used for a range of applications, including disease modelling, development of new therapies and in the study of retinogenesis. Despite many similarities to the retinas developed in vivo, they lack some key physiological features, including immune cells. We engineered an hiPSC co‐culture system containing retinal organoids and microglia‐like (iMG) cells and tested their retinal invasion capacity and function. We incorporated iMG into retinal organoids at 13 weeks and tested their effect on function and development at 15 and 22 weeks of differentiation. Our key findings showed that iMG cells were able to respond to endotoxin challenge in monocultures and when co‐cultured with the organoids. We show that retinal organoids developed normally and retained their ability to generate spiking activity in response to light. Thus, this new co‐culture immunocompetent in vitro retinal model provides a platform with greater relevance to the in vivo human retina.  相似文献   
556.
557.
Type 1 diabetes is an autoimmune condition characterised by a pancreatic insulin secretion deficit, resulting in high blood glucose concentrations, which can lead to micro- and macrovascular complications. Type 1 diabetes also leads to impaired glucagon production by the pancreatic α-cells, which acts as a counter-regulatory hormone to insulin. A closed-loop system for automatic insulin and glucagon delivery, also referred to as an artificial pancreas, has the potential to reduce the self-management burden of type 1 diabetes and reduce the risk of hypo- and hyperglycemia. To date, bihormonal closed-loop systems for glucagon and insulin delivery have been based on two independent controllers. However, in physiology, the secretion of insulin and glucagon in the body is closely interconnected by paracrine and endocrine associations. In this work, we present a novel biologically-inspired glucose control strategy that accounts for such coordination. An in silico study using an FDA-accepted type 1 simulator was performed to evaluate the proposed coordinated control strategy compared to its non-coordinated counterpart, as well as an insulin-only version of the controller. The proposed coordinated strategy achieves a reduction of hyperglycemia without increasing hypoglycemia, when compared to its non-coordinated counterpart.  相似文献   
558.
Aims:  To investigate the involvement of oxidative stress and thiol redox state (TRS) in sclerotial differentiation of Sclerotium rolfsii and Sclerotinia sclerotiorum.
Methods and results:  Oxidative stress in these fungi was assessed by lipid peroxidation, which was higher in comparison with their nonsclerotiogenic counterpart strains. TRS [measured as glutathione (GSH) and cysteine] was associated with oxidative stress and differentiation using the TRS modulator and antioxidant Ν -acetylcysteine (AcCSH) and the GSH biosynthesis inducer and inhibitor l -2-oxo-thiazolidine-4-carboxylate and l -buthionine- S , R -sulphoximine (BSO) respectively. Differentiation and oxidative stress was decreased by AcCSH in both fungi. The decrease of differentiation by BSO was not associated with oxidative stress in these fungi.
Conclusions:  Differentiation and oxidative stress in both fungi depends on the availability of antioxidant noncytotoxic –SH groups and is not depended on any direct antioxidant role of GSH and its precursor cysteine.
Significance and Impact of the Study:  This study helps to understand the mechanism(s) of sclerotial differentiation in these agriculturally important phytopathogenic fungi and proposes that AcCSH can be used as potent fungicide by (i) acting as growth inhibiting cytotoxic oxidant and (ii) sustaining these fungi in their undifferentiated hyphal stage where they are vulnerable to degradation by soil micro-organisms.  相似文献   
559.
Microglia are the primary resident immune cells in the retina. They regulate neuronal survival and synaptic pruning making them essential for normal development. Following injury, they mediate adaptive responses and under pathological conditions they can trigger neurodegeneration exacerbating the effect of a disease. Retinal organoids derived from human induced pluripotent stem cells (hiPSCs) are increasingly being used for a range of applications, including disease modelling, development of new therapies and in the study of retinogenesis. Despite many similarities to the retinas developed in vivo, they lack some key physiological features, including immune cells. We engineered an hiPSC co-culture system containing retinal organoids and microglia-like (iMG) cells and tested their retinal invasion capacity and function. We incorporated iMG into retinal organoids at 13 weeks and tested their effect on function and development at 15 and 22 weeks of differentiation. Our key findings showed that iMG cells were able to respond to endotoxin challenge in monocultures and when co-cultured with the organoids. We show that retinal organoids developed normally and retained their ability to generate spiking activity in response to light. Thus, this new co-culture immunocompetent in vitro retinal model provides a platform with greater relevance to the in vivo human retina.  相似文献   
560.
Mammalian Hedgehog (HH) signalling pathway plays an essential role in tissue homeostasis and its deregulation is linked to rheumatological disorders. UBR5 is the mammalian homologue of the E3 ubiquitin-protein ligase Hyd, a negative regulator of the Hh-pathway in Drosophila. To investigate a possible role of UBR5 in regulation of the musculoskeletal system through modulation of mammalian HH signaling, we created a mouse model for specific loss of Ubr5 function in limb bud mesenchyme. Our findings revealed a role for UBR5 in maintaining cartilage homeostasis and suppressing metaplasia. Ubr5 loss of function resulted in progressive and dramatic articular cartilage degradation, enlarged, abnormally shaped sesamoid bones and extensive heterotopic tissue metaplasia linked to calcification of tendons and ossification of synovium. Genetic suppression of smoothened (Smo), a key mediator of HH signalling, dramatically enhanced the Ubr5 mutant phenotype. Analysis of HH signalling in both mouse and cell model systems revealed that loss of Ubr5 stimulated canonical HH-signalling while also increasing PKA activity. In addition, human osteoarthritic samples revealed similar correlations between UBR5 expression, canonical HH signalling and PKA activity markers. Our studies identified a crucial function for the Ubr5 gene in the maintenance of skeletal tissue homeostasis and an unexpected mode of regulation of the HH signalling pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号