首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   276篇
  免费   10篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   4篇
  2016年   6篇
  2015年   11篇
  2014年   12篇
  2013年   27篇
  2012年   24篇
  2011年   29篇
  2010年   10篇
  2009年   12篇
  2008年   24篇
  2007年   15篇
  2006年   15篇
  2005年   11篇
  2004年   19篇
  2003年   14篇
  2002年   12篇
  2001年   4篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1996年   4篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1991年   4篇
  1990年   1篇
排序方式: 共有286条查询结果,搜索用时 328 毫秒
151.
152.
Subgroups of patients with chronic lymphocytic leukemia (CLL) have distinct expression profiles of Toll-like receptor (TLR) pathway–associated genes. To test the hypothesis that signaling through innate immunity receptors may influence the behavior of the malignant clone, we investigated the functional response triggered by the stimulation of TLRs and NOD2 in 67 CLL cases assigned to different subgroups on the basis of immunoglobulin heavy variable (IGHV ) gene usage, IGHV gene mutational status or B-cell receptor (BcR) stereotypy. Differences in the induction of costimulatory molecules and/or apoptosis were observed in mutated versus unmutated CLL. Different responses were also identified in subsets with stereotyped BcRs, underscoring the idea that “subset-biased” innate immunity responses may occur independently of mutational status. Additionally, differential modulation of kinase activities was induced by TLR stimulation of different CLL subgroups, revealing a TLR7-tolerant state for cases belonging to stereotyped subset #4. The distinct patterns of TLR/NOD2 functional activity in cells from CLL subgroups defined by the molecular features of the clonotypic BcRs might prove relevant for elucidating the immune mechanisms underlying CLL natural history and for defining subgroups of patients who might benefit from treatment with specific TLR ligands.  相似文献   
153.

Background

Traditional antibiotics are increasingly suffering from the emergence of multidrug resistance amongst pathogenic bacteria leading to a range of novel approaches to control microbial infections being investigated as potential alternative treatments. One plausible antimicrobial alternative could be the combination of conventional antimicrobial agents/antibiotics with small molecules which block multidrug efflux systems known as efflux pump inhibitors. Bioassay-driven purification and structural determination of compounds from plant sources have yielded a number of pump inhibitors which acted against gram positive bacteria.

Methodology/Principal Findings

In this study we report the identification and characterization of 4′,5′-O-dicaffeoylquinic acid (4′,5′-ODCQA) from Artemisia absinthium as a pump inhibitor with a potential of targeting efflux systems in a wide panel of Gram-positive human pathogenic bacteria. Separation and identification of phenolic compounds (chlorogenic acid, 3′,5′-ODCQA, 4′,5′-ODCQA) was based on hyphenated chromatographic techniques such as liquid chromatography with post column solid-phase extraction coupled with nuclear magnetic resonance spectroscopy and mass spectroscopy. Microbial susceptibility testing and potentiation of well know pump substrates revealed at least two active compounds; chlorogenic acid with weak antimicrobial activity and 4′,5′-ODCQA with pump inhibitory activity whereas 3′,5′-ODCQA was ineffective. These intitial findings were further validated with checkerboard, berberine accumulation efflux assays using efflux-related phenotypes and clinical isolates as well as molecular modeling methodology.

Conclusions/Significance

These techniques facilitated the direct analysis of the active components from plant extracts, as well as dramatically reduced the time needed to analyze the compounds, without the need for prior isolation. The calculated energetics of the docking poses supported the biological information for the inhibitory capabilities of 4′,5′-ODCQA and furthermore contributed evidence that CQAs show a preferential binding to Major Facilitator Super family efflux systems, a key multidrug resistance determinant in gram-positive bacteria.  相似文献   
154.

Introduction

Prognosis of patients with operable laryngeal cancer is highly variable and therefore potent prognostic biomarkers are warranted. The insulin-like growth factor receptor (IGFR) signaling pathway plays a critical role in laryngeal carcinogenesis and progression.

Patients and Methods

We identified all patients with localized TNM stage I–III laryngeal cancer managed with potentially curative surgery between 1985 and 2008. Immunohistochemical (IHC) expression of IGF1R-alpha, IGF1R-beta and IGF2R was evaluated using the immunoreactive score (IRS) and mRNA levels of important effectors of the IGFR pathway were assessed, including IGF1R, IGF-binding protein 3 (IGFBP3), suppressor of cytokine signaling 2 (SOCS2) and members of the MAP-kinase (MAP2K1, MAPK9) and phosphatidyl-inositol-3 kinase (PIK3CA, PIK3R1) families. Cox-regression models were applied to assess the predictive value of biomarkers on disease-free survival (DFS) and overall survival (OS).

Results

Among 289 eligible patients, 95.2% were current or ex smokers, 75.4% were alcohol abusers, 15.6% had node-positive disease and 32.2% had received post-operative irradiation. After a median follow-up of 74.5 months, median DFS was 94.5 months and median OS was 106.3 months. Using the median IRS as the pre-defined cut-off, patients whose tumors had increased IGF1R-alpha cytoplasm or membrane expression experienced marginally shorter DFS and significantly shorter OS compared to those whose tumors had low IGF1R-alpha expression (91.1 vs 106.2 months, p = 0.0538 and 100.3 vs 118.6 months, p = 0.0157, respectively). Increased mRNA levels of MAPK9 were associated with prolonged DFS (p = 0.0655) and OS (p = 0.0344). In multivariate analysis, IGF1R-alpha overexpression was associated with a 46.6% increase in the probability for relapse (p = 0.0374). Independent predictors for poor OS included node-positive disease (HR = 2.569, p<0.0001), subglottic/transglottic localization (HR = 1.756, p = 0.0438) and IGF1R-alpha protein overexpression (HR = 1.475, p = 0.0504).

Conclusion

IGF1R-alpha protein overexpression may serve as an independent predictor of relapse and survival in operable laryngeal cancer. Prospective evaluation of the IGF1R-alpha prognostic utility is warranted.  相似文献   
155.
156.
Proteasome-dependent and autophagy-mediated degradation of eukaryotic cellular proteins represent the two major proteostatic mechanisms that are critically implicated in a number of signaling pathways and cellular processes. Deregulation of functions engaged in protein elimination frequently leads to development of morbid states and diseases. In this context, and through the utilization of GAL4/UAS genetic tool, we herein examined the in vivo contribution of proteasome and autophagy systems in Drosophila eye and wing morphogenesis. By exploiting the ability of GAL4-ninaE. GMR and P{GawB}BxMS1096 genetic drivers to be strongly and preferentially expressed in the eye and wing discs, respectively, we proved that proteasomal integrity and ubiquitination proficiency essentially control fly’s eye and wing development. Indeed, subunit- and regulator-specific patterns of severe organ dysmorphia were obtained after the RNAi-induced downregulation of critical proteasome components (Rpn1, Rpn2, α5, β5 and β6) or distinct protein-ubiquitin conjugators (UbcD6, but not UbcD1 and UbcD4). Proteasome deficient eyes presented with either rough phenotypes or strongly dysmorphic shapes, while transgenic mutant wings were severely folded and carried blistered structures together with loss of vein differentiation. Moreover, transgenic fly eyes overexpressing the UBP2-yeast deubiquitinase enzyme were characterized by an eyeless-like phenotype. Therefore, the proteasome/ubiquitin proteolytic activities are undoubtedly required for the normal course of eye and wing development. In contrast, the RNAi-mediated downregulation of critical Atg (1, 4, 7, 9 and 18) autophagic proteins revealed their non-essential, or redundant, functional roles in Drosophila eye and wing formation under physiological growth conditions, since their reduced expression levels could only marginally disturb wing’s, but not eye’s, morphogenetic organization and architecture. However, Atg9 proved indispensable for the maintenance of structural integrity of adult wings in aged flies. In toto, our findings clearly demonstrate the gene-specific fundamental contribution of proteasome, but not autophagy, in invertebrate eye and wing organ development.  相似文献   
157.
158.
Smocovitis VB 《Genetics》2011,187(2):357-366
This article explores the sociopolitical backdrop of genetics research during the politically turbulent decades of the mid-20th century that saw the persecution, displacement, and relocation of unpopular minorities in both the United States and Europe. It explores how geneticists in the United States accommodated these disruptions through formal and informal émigré networks and how the subsequent war affected their research programs and their lives. It does so by focusing on the career and life of geneticist Masuo Kodani, who, as a Japanese American, found himself conducting unexpected cytogenetics research in Manzanar, a "relocation center," or internment camp, located in the California desert, after the attack on Pearl Harbor. After the war, Kodani's subsequent career continued to be shaped by his experiences as a Japanese American and by the specific skills as a cytogeneticist that he demonstrated at a critical period in the history of 20th-century genetics. His many relocations in search of employment culminated in his work with the Atomic Bomb Casualty Commission on human chromosomes, for which he is best known.  相似文献   
159.
C-Glycoamino acids bearing a variety of sugar moieties were prepared by the hetero-Diels–Alder addition of ethyl 2-nitrosoacrylate to exo-glycals. The reaction proceeds smoothly to yield spirocyclic oxazines that can be converted into useful products by several hydrogenolytic techniques.  相似文献   
160.
Programmed cell death (PCD) is an evolutionary conserved and genetically regulated form of cell death, in which the cell plays an active role in its own demise. It is widely recognized that PCD can be morphologically classified into three major types: type I, known as apoptosis, type II, called autophagy, and type III, specified as cytoplasmic cell death. So far, PCD has been morphologically analyzed in certain model insect species of the meroistic polytrophic ovary-type, but has never been examined before in insects carrying meroistic telotrophic ovaries. In the present study, we attempted to thoroughly describe the three different types (I, II and III) of PCD occurring during oogenesis in the meroistic telotrophic ovary of the Coleoptera species Adalia bipunctata, at different developmental ages of the adult female insects. We reveal that in the ladybird beetle A. bipunctata, the ovarian tropharia undergo age-dependent forms of apoptotic, autophagic and cytoplasmic (paraptotic-like) cell death, which seem to operate in a rather synergistic fashion, in accordance with previous observations in Diptera and Lepidoptera species. Furthermore, we herein demonstrate the occurrence of morphogenetically abnormal ovarioles in A. bipunctata female insects. These atretic ovarioles collapse and die through a PCD-mediated process that is characterized by the combined activation of all three types of PCD. Conclusively, the distinct cell death programs (I, II and III) specifically engaged during oogenesis of A. bipunctata provide strong evidence for the structural and functional conserved nature of PCD during insect evolution among meroistic telotrophic and meroistic polytrophic ovary-type insects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号