首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   273篇
  免费   19篇
  292篇
  2022年   2篇
  2021年   8篇
  2020年   4篇
  2019年   14篇
  2018年   11篇
  2017年   8篇
  2016年   10篇
  2015年   10篇
  2014年   16篇
  2013年   24篇
  2012年   23篇
  2011年   23篇
  2010年   11篇
  2009年   13篇
  2008年   11篇
  2007年   17篇
  2006年   17篇
  2005年   20篇
  2004年   15篇
  2003年   9篇
  2002年   13篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1994年   2篇
  1992年   1篇
  1985年   1篇
  1981年   1篇
  1977年   1篇
排序方式: 共有292条查询结果,搜索用时 0 毫秒
21.
The species Hellinsia jordanica Ustjuzhanin & Kovtunovich sp. n. is newly described from Jordan.

http://www.zoobank.org/urn:lsid:zoobank.org:pub:EED698C9-1943-41BC-A503-13A2128A62C5  相似文献   
22.
Most bacteria at certain stages of their life cycle are able to move actively; they can swim in a liquid or crawl on various surfaces. A typical path of the moving cell often resembles the trajectory of a random walk. However, bacteria are capable of modifying their apparently random motion in response to changing environmental conditions. As a result, bacteria can migrate towards the source of nutrients or away from harmful chemicals. Surprisingly, many bacterial species that were studied have several distinct motility patterns, which can be theoretically modeled by a unifying random walk approach. We use this approach to quantify the process of cell dispersal in a homogeneous environment and show how the bacterial drift velocity towards the source of attracting chemicals is affected by the motility pattern of the bacteria. Our results open up the possibility of accessing additional information about the intrinsic response of the cells using macroscopic observations of bacteria moving in inhomogeneous environments.  相似文献   
23.
Type IV pili (Tfp) are prokaryotic retractable appendages known to mediate surface attachment, motility, and subsequent clustering of cells. Tfp are the main means of motility for Neisseria gonorrhoeae, the causative agent of gonorrhea. Tfp are also involved in formation of the microcolonies, which play a crucial role in the progression of the disease. While motility of individual cells is relatively well understood, little is known about the dynamics of N. gonorrhoeae aggregation. We investigate how individual N. gonorrhoeae cells, initially uniformly dispersed on flat plastic or glass surfaces, agglomerate into spherical microcolonies within hours. We quantify the clustering process by measuring the area fraction covered by the cells, number of cell aggregates, and their average size as a function of time. We observe that the microcolonies are also able to move but their mobility rapidly vanishes as the size of the colony increases. After a certain critical size they become immobile. We propose a simple theoretical model which assumes a pili-pili interaction of cells as the main clustering mechanism. Numerical simulations of the model quantitatively reproduce the experimental data on clustering and thus suggest that the agglomeration process can be entirely explained by the Tfp-mediated interactions. In agreement with this hypothesis mutants lacking pili are not able to form colonies. Moreover, cells with deficient quorum sensing mechanism show similar aggregation as the wild-type bacteria. Therefore, our results demonstrate that pili provide an essential mechanism for colony formation, while additional chemical cues, for example quorum sensing, might be of secondary importance.  相似文献   
24.
25.
Glycolate oxidase (EC 1.1.3.15) activity was detected both in the bundle sheath (79%) and mesophyll (21%) tissues of maize leaves. Three peaks of glycolate oxidase activity were separated from maize leaves by the linear KCl gradient elution from the DEAE-Toyopearl column. The first peak corresponded to the glycolate oxidase isoenzyme located in the bundle sheath cells, the second peak had a dual location and the third peak was related to the mesophyll fraction. The mesophyll isoenzyme showed higher affinity for glycolate (Km 23 micromol x L(-1)) and a higher pH optimum (7.5-7.6) as compared to the bundle sheath isoenzyme (Km 65 micromol x L(-1), pH optimum 7.3). The bundle sheath isoenzyme was strongly activated by isocitrate and by succinate while the mesophyll isoenzyme was activated by isocitrate only slightly and was inhibited by succinate. It is concluded that although the glycolate oxidase activity is mainly attributed to the bundle sheath, conversion of glycolate to glyoxylate occurs also in the mesophyll tissue of C4 plant leaves.  相似文献   
26.
Reconstituted municipal solid waste (MSW) with varying contents of putrescible and cellulosic waste was incubated anaerobically under mesophilic conditions. Standard physicochemical parameters were monitored, together with stable isotopic signatures of produced CH4 and CO2. δ13C values for CH4 indicated a change of methanogenic metabolism with time. CH4 was predominantly produced from H2/CO2 at the beginning of the incubations. This period was associated with important shifts in archaeal communities monitored by automated ribosomal intergenic spacer analysis (ARISA) and FISH of oligonucleotidic probes targeting specifically 16S rRNA gene of various methanogenic groups. The onset of the active methane generation phase was characterized by an increase of CH4δ13C, indicating a progressive shift toward an aceticlastic metabolism. When the methane production levelled off, a decrease in the isotopic signature was observed toward values characteristics of hydrogenotrophic metabolism. ARISA profiles were, however, found to be stable from the beginning of the active methane generation phase until the end of the experiment. FISH observation indicated that members of the family Methanosarcinaceae were predominant in the archaeal community during this period, suggesting that these methanogens might exhibit a high metabolic versatility during methanization of waste.  相似文献   
27.
28.
29.
30.
It has been known for a long time that mammalian peroxisomes are extremely fragile in vitro. Changes in the morphological appearance and leakage of proteins from purified particles demonstrate that peroxisomes are damaged during isolation. However, some properties of purified peroxisomes, e.g., the latency of catalase, imply that their membranes are not disrupted. In the current study, we tried to ascertain the mechanism of this unusual behavior of peroxisomes in vitro. Biochemical and morphological examination of isolated peroxisomes subjected to sonication or to freezing and thawing showed that the membrane of the particles seals after disruption, restoring permeability properties. Transient damage of the membrane leads to the formation of peroxisomal "ghosts" containing nucleoid but nearly devoid of matrix proteins. The rate of leakage of matrix proteins from broken particles depended inversely on their molecular size. The effect of polyethylene glycols on peroxisomal integrity indicated that these particles are osmotically sensitive. Peroxisomes suffered an osmotic lysis during isolation that was resistant to commonly used low-molecular-mass osmoprotectors, e.g., sucrose. Damage to peroxisomes was partially prevented by applying more "bulky" osmoprotectors, e.g., polyethylene glycol 1500. A method was developed for the isolation of highly purified and nearly intact peroxisomes from rat liver by using polyethylene glycol 1500 as an osmoprotector. osmolarity; cell fractionation; isolation of organelles  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号