首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   243篇
  免费   10篇
  国内免费   1篇
  2022年   2篇
  2021年   14篇
  2020年   3篇
  2019年   4篇
  2018年   10篇
  2017年   6篇
  2016年   12篇
  2015年   9篇
  2014年   14篇
  2013年   25篇
  2012年   24篇
  2011年   26篇
  2010年   19篇
  2009年   17篇
  2008年   9篇
  2007年   15篇
  2006年   9篇
  2005年   8篇
  2004年   9篇
  2003年   5篇
  2002年   6篇
  2001年   2篇
  2000年   1篇
  1998年   2篇
  1996年   1篇
  1983年   1篇
  1981年   1篇
排序方式: 共有254条查询结果,搜索用时 17 毫秒
121.
PurposeIL-13, TNF-α and IL-1β have various effects on lung cancer growth and death, but the signaling pathways mediating these effects have not been extensively analyzed. Therefore, the effects of IL-13, TNF-α and IL-1β alone, and in combination with Fas, on cell viability and death as well as major signaling pathways involved in these effects were investigated in A549 lung carcinoma cells.ResultsUsing MTT and flow cytometry, IL-13, TNF-α and IL-1β pretreatment decreased Fas-induced cell death. These anti-cell death effects were attenuated by pretreatment with inhibitors of Nuclear factor-κB [NF-κB], Phoshatidylinositole-3 kinase [PI3-K], JNK, p38 and ERK1/2 pathways.Using Western blot, IL-13, TNF-α and IL-1β treated cells showed time-dependent expression of p-ERK1/2, p-p38, p-JNK, p-Akt and p-IκBα proteins, decreased IκBα protein expression, no cleavage of Caspase-3 and PARP1 proteins and no notable alterations of Fas protein. IL-13 and TNF-α treated cells showed time-dependent increase of FLIPL expression.ConclusionIL-13, TNF-α and IL-1β attenuate the pro-cell death effects of Fas on A549 cells, at least partially, by pathways involving the NF-κB, PI3-K and MAP kinases, but not by alterations of Fas protein expression. The IL-13 and TNF-α cell survival effects may also be due to increased expression of FLIPL protein.  相似文献   
122.
Despite the well-documented relation between estradiol (E2) and behavior, exposure to stressors may modify sensitivity to E2. The effects of E2 on behavior are, in part, likely related to their modulation of the serotonin (5HT) and oxytocin systems. The short allele (s-variant) polymorphism found in the promoter region of the SLC6A4 gene that encodes the 5HT transporter (5HTT) modulates responsivity to stressors. The current study used ovariectomized adult female rhesus monkeys to evaluate how exposure to the psychosocial stressor of social subordination and polymorphisms in the gene encoding 5HTT influence the behavioral effects of E2 and immunoreactive serum oxytocin. Dominant females had higher levels of oxytocin than subordinate animals even though E2 increased immunoreactive serum oxytocin in all females. E2 increased affiliative behaviors in all animals, with even more of these prosocial behaviors directed at dominant females. S-variant females, regardless of social status, were more aggressive toward more subordinate cage mates and these behaviors too were increased by E2. Subordinate s-variant females are most often involved in agonistic behavior, less affiliative behavior, and were less responsive to the anxiolytic action of E2. The results show that the short allele of the 5HTT gene synergizes with psychosocial stress exposure to affect the behavioral efficacy of E2 while confirming the actions of E2 for producing generalized behavioral arousal in females. Whether differences in the central action of 5HT and/or oxytocin are responsible for this effect requires further study.  相似文献   
123.
Cell tracking with magnetic resonance imaging (MRI) and iron nanoparticles is commonly used to monitor the fate of implanted cells in preclinical disease models. Few studies have employed these methods to study cancer cells because proliferative iron-labeled cancer cells will lose the label as they divide. In this study, we evaluate the potential for retention of the iron nanoparticle label, and resulting MRI signal, to serve as a marker for slowly dividing cancer cells. Green fluorescent protein-transfected MDA-MB-231 breast cancer cells were labeled with red fluorescent micron-sized superparamagnetic iron oxide (MPIO) nanoparticles. Cells were examined in vitro at multiple time points after labeling by staining for iron-labeled cells and by flow cytometric detection of the fluorescent MPIO. Severe combined immune deficiency (SCID) mice were implanted with 5 x 105 MPIO-labeled or unlabeled cells in the mammary fat pad and MRI was performed weekly until 28 days after injection. Microscopy was performed to validate MRI. In vitro assays revealed a very small percentage of cells that retained MPIO at 14 days after labeling. Regions of signal loss were observed in MRI of primary tumors that developed from iron-labeled cancer cells. Small focal regions of signal loss were detected in images of the axillary and brachial nodes in six of eight mice, at day 14 or later, with microscopy confirming the presence of iron-labeled cancer cells. Our data suggest an interesting role for cell tracking with iron particles since label retention leads to persistent signal void, allowing proliferative status to be determined.  相似文献   
124.
125.
126.
The cornea is a transparent, avascular tissue that acts as the major refractive surface of the eye. Corneal transparency, assured by the inner stroma, is vital for this role. Disruption in stromal transparency can occur in some inherited or acquired diseases. As a consequence, light entering the eye is blocked or distorted, leading to decreased visual acuity. Possible treatment for restoring transparency could be via viral-based gene therapy. The stroma is particularly amenable to this strategy due to its immunoprivileged nature and low turnover rate. We assayed the potential of AAV vectors to transduce keratocytes following intra-stromal injection in vivo in the mouse cornea and ex vivo in human explants. In murine and human corneas, we transduced the entire stroma using a single injection, preferentially targeted keratocytes and achieved long-term gene transfer (up to 17 months in vivo in mice). Of the serotypes tested, AAV2/8 was the most promising for gene transfer in both mouse and man. Furthermore, transgene expression could be transiently increased following aggression to the cornea.  相似文献   
127.
The goal of our work has been to investigate the mechanisms of gender-independent human skin ageing and examine the hypothesis of skin being an adequate model of global ageing. For this purpose, whole genome gene profiling was employed in sun-protected skin obtained from European Caucasian young and elderly females (mean age 26.7±4 years [n1 = 7] and 70.75±3.3 years [n2 = 4], respectively) and males (mean age 25.8±5.2 years [n3 = 6] and 76±3.8 years [n4 = 7], respectively) using the Illumina array platform. Confirmation of gene regulation was performed by real-time RT-PCR and immunohistochemistry. 523 genes were significantly regulated in female skin and 401 genes in male skin for the chosen criteria. Of these, 183 genes exhibited increased and 340 decreased expression in females whereas 210 genes showed increased and 191 decreased expression in males with age. In total, 39 genes were common in the target lists of significant regulated genes in males and females. 35 of these genes showed increased (16) or decreased (19) expression independent of gender. Only 4 overlapping genes (OR52N2, F6FR1OP2, TUBAL3 and STK40) showed differential regulation with age. Interestingly, Wnt signalling pathway showed to be significantly downregulated in aged skin with decreased gene and protein expression for males and females, accordingly. In addition, several genes involved in central nervous system (CNS) ageing (f.i. APP, TAU) showed to be expressed in human skin and were significanlty regulated with age. In conclusion, our study provides biomarkers of endogenous human skin ageing in both genders and highlight the role of Wnt signalling in this process. Furthermore, our data give evidence that skin could be used as a good alternative to understand ageing of different tissues such as CNS.  相似文献   
128.
Zinc (Zn), a cell-protective metal against various toxic compounds, is the key agent for neutral endopeptidase (NEP) functional structure. NEP is a zinc metalloenzyme which degrades endogenous opioids and is expressed in human keratinocytes (HaCaT). Ropivacaine, a widely used opiate local anaesthetic, exerts cell toxic and apoptotic effects against HaCaT cells. The aim of the present study is to investigate whether zinc modulates the effects of ropivacaine on proliferation, viability, apoptosis and NEP expression in HaCaT cells. To investigate the role of ropivacaine in NEP function, HaCaT cells overexpressing NEP were generated via cell transfection with plasmids carrying NEP cDNA. Ropivacaine's anti-proliferative effect was tested by Neubauer's chamber cell counting, and induction of cell death was demonstrated by trypan blue exclusion assay. Apoptosis due to ropivacaine was tested via DNA fragmentation and poly-ADP-ribose-polymerase (PARP) cleavage. NEP and PARP expression was performed by western blot analysis. Results showed that zinc (15????) inhibited proliferation and cell death induction by ropivacaine (0.5, 1 and 2?mM) (p?<?0.05) as well as apoptosis induced by the drug (0.5 and 1?mM) in HaCaT cells. Ropivacaine (1.0, 2.0 and 5.0?mM) downregulated NEP expression in the presence of zinc (15????) while NEP overexpression enhanced ropivacaine's apoptotic effect. In conclusion, the abilities of zinc to inhibit the toxic and apoptotic effects of ropivacaine, to maintain NEP downregulation induced by the drug and, consequently, to enhance its anaesthetic result suggest that zinc may have a significant role in pain management and tissue protection.  相似文献   
129.
l-DOPA decarboxylase (DDC) plays an essential role in the enzymatic synthesis of dopamine and alterations in its gene expression have been reported in several malignancies. Our objective was to analyze DDC messenger RNA (mRNA) and protein expression in laryngeal tissues and to evaluate the clinical implication of this molecule in laryngeal cancer. In this study, total RNA was isolated from 157 tissue samples surgically removed from 100 laryngeal cancer patients. A highly sensitive real-time polymerase chain reaction methodology based on SYBR Green I fluorescent dye was developed for the quantification of DDC mRNA levels. In addition, Western blot analysis was performed for the detection of DDC protein. DDC mRNA expression was revealed to be significantly downregulated in primary laryngeal cancer samples compared with their nonmalignant counterparts (P = .001). A significant negative association was also disclosed between DDC mRNA levels and TNM staging (P = .034). Univariate analysis showed that patients bearing DDC-positive tumors had a significantly decreased risk of death (hazard ratio = 0.23, P = .012) and local recurrence (hazard ratio = 0.32, P =.006), whereas DDC expression retained its favorable prognostic significance in the multivariate analysis. Kaplan-Meier curves further demonstrated that DDC-positive patients experienced longer overall and disease-free survival periods (P = .006 and P = .004, respectively). Moreover, DDC protein was detected in both neoplastic and noncancerous tissues. Therefore, our results suggest that DDC expression status could qualify as a promising biomarker for the future clinical management of laryngeal cancer patients.  相似文献   
130.
ELISA is the main approach for the sensitive quantification of protein biomarkers in body fluids and is currently employed in clinical laboratories for the measurement of clinical markers. As such, it also constitutes the main methodological approach for biomarker validation and further qualification. For the latter, specific assay performance requirements have to be met, as described in respective guidelines of regulatory agencies. Even though many clinical ELISA assays in serum are regularly used, ELISA clinical applications in urine are significantly less. The scope of our study was to evaluate ELISA assay analytical performance in urine for a series of potential biomarkers for bladder cancer, as a first step towards their large scale clinical validation. Seven biomarkers (Secreted protein acidic and rich in cysteine, Survivin, Slit homolog 2 protein, NRC-Interacting Factor 1, Histone 2B, Proteinase-3 and Profilin-1) previously described in the literature as having differential expression in bladder cancer were included in the study. A total of 11 commercially available ELISA tests for these markers were tested by standard curve analysis, assay reproducibility, linearity and spiking experiments. The results show disappointing performance with coefficients of variation>20% for the vast majority of the tests performed. Only 3 assays (for Secreted protein acidic and rich in cysteine, Survivin and Slit homolog 2 protein) passed the accuracy thresholds and were found suitable for further application in marker quantification. These results collectively reflect the difficulties in developing urine-based ELISA assays of sufficient analytical performance for clinical application, presumably attributed to the urine matrix itself and/or presence of markers in various isoforms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号