首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1059篇
  免费   54篇
  1113篇
  2023年   8篇
  2022年   13篇
  2021年   26篇
  2020年   18篇
  2019年   13篇
  2018年   14篇
  2017年   14篇
  2016年   17篇
  2015年   42篇
  2014年   35篇
  2013年   63篇
  2012年   81篇
  2011年   60篇
  2010年   34篇
  2009年   39篇
  2008年   53篇
  2007年   45篇
  2006年   49篇
  2005年   45篇
  2004年   44篇
  2003年   36篇
  2002年   40篇
  2001年   18篇
  2000年   26篇
  1999年   16篇
  1998年   13篇
  1997年   6篇
  1996年   14篇
  1995年   8篇
  1994年   8篇
  1992年   18篇
  1991年   17篇
  1990年   9篇
  1989年   10篇
  1988年   10篇
  1987年   11篇
  1986年   10篇
  1985年   17篇
  1984年   12篇
  1983年   14篇
  1982年   6篇
  1980年   13篇
  1979年   9篇
  1978年   5篇
  1976年   7篇
  1974年   5篇
  1972年   4篇
  1971年   4篇
  1966年   4篇
  1965年   4篇
排序方式: 共有1113条查询结果,搜索用时 11 毫秒
11.
The precise positioning of the flexible C-helix in the catalytic core is a critical step in the activation of most protein kinases. Consequently, the alphaC-beta4 loop, which anchors the C-helix to the catalytic core, is highly conserved and mediates key structural interactions that serve as a hinge for C-helix movement. While these hinge interactions are conserved across diverse eukaryotic protein kinase structures, some families such as AGC kinases diverge from the canonical hinge interactions. This divergence was recently proposed to facilitate an alternative mode of regulation wherein a conserved C-terminal tail interacts with the alphaC-beta4 loop to position the C-helix. Here we show how interactions between the alphaC-beta4 loop and the N-terminal SH2 domain of ZAP-70 tyrosine kinase are mechanistically and functionally analogous to interactions between the alphaC-beta4 loop and the C-terminal tail of AGC kinases. Such cis regulation of protein kinase activity may be a feature of other eukaryotic protein kinase families as well.  相似文献   
12.
Advances in selectable marker genes for plant transformation   总被引:1,自引:0,他引:1  
Plant transformation systems for creating transgenics require separate process for introducing cloned DNA into living plant cells. Identification or selection of those cells that have integrated DNA into appropriate plant genome is a vital step to regenerate fully developed plants from the transformed cells. Selectable marker genes are pivotal for the development of plant transformation technologies because marker genes allow researchers to identify or isolate the cells that are expressing the cloned DNA, to monitor and select the transformed progeny. As only a very small portion of cells are transformed in most experiments, the chances of recovering transgenic lines without selection are usually low. Since the selectable marker gene is expected to function in a range of cell types it is usually constructed as a chimeric gene using regulatory sequences that ensure constitutive expression throughout the plant. Advent of recombinant DNA technology and progress in plant molecular biology had led to a desire to introduce several genes into single transgenic plant line, necessitating the development of various types of selectable markers. This review article describes the developments made in the recent past on plant transformation systems using different selection methods adding a note on their importance as marker genes in transgenic crop plants.  相似文献   
13.
The plant cell wall is the structural basis of cellular form and thus forms a foundation on which morphogenesis builds organs and tissues. Enzymes capable of modifying major wall components are prominent candidates for regulating wall form and function. Xyloglucan endotransglucosylases/hydrolases (XTHs) are predicted to participate in xyloglucan integration and/or restructuring. XTHs are encoded by large gene families in plants; the Arabidopsis genome encodes 33 XTHs. To gain insight into the potential physiological relevance of the distinct members of this family, GUS reporter fusion genes were constructed, and plants expressing these transgenes were characterized to reveal spatial and temporal patterns of expression. In addition, Genevestigator sources were mined for comprehensive and comparative XTH expression regulation analysis. These data reveal that the Arabidopsis XTHs are likely expressed in every developmental stage from seed germination through flowering. All organs show XTH::GUS expression and most, if not all, are found to express multiple XTH::GUS genes. These data suggest that XTHs may contribute to morphogenesis at every developmental stage and in every plant organ. Different XTHs have remarkably diverse and distinct expression patterns indicating that paralogous genes have evolved differential expression regulation perhaps contributing to the maintenance of the large gene family. Extensive overlap in XTH expression patterns is evident; thus, XTHs may act combinatorially in determining wall properties of specific tissues or organs. Knowledge of gene-specific expression among family members yields evidence of where and when gene products may function and provides insights to guide rational approaches to investigate function through reverse genetics. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   
14.
In this report, ZnO nanoparticles embedded cellulose acetate (CA) fibrous membrane with multifunctional properties have been prepared through electrospinning method. The morphology of the electrospun composite membrane was analyzed by Scanning Electron Microscope (SEM). It was found that the polymer concentration in the solution has a significant effect on the morphology of the fibers. The optical property of the sample was tested using Photo Luminescence (PL) spectra. There is no significant change in the emission features of cellulose acetate with the addition of ZnO. The anti-bacterial property of the sample was studied using disc diffusion method. The wettability of the pure and composite fibrous membrane was also studied by measuring the contact angle of water on the membrane. It was observed that the embedded ZnO in the CA was responsible for the hydrophobic nature of the surface.  相似文献   
15.
Whole cells and isolated chlorosomes (antenna complex) of the green photosynthetic bacterium Chloroflexus aurantiacus have been studied by absorption spectroscopy (77 K and room temperature), fluorescence spectroscopy, circular dichroism, linear dichroism and electron spin resonance spectroscopy. The chlorosome absorption spectrum has maxima at 450 (contributed by carotenoids and bacteriochlorophyll (BChl) a Soret), 742 (BChl c) and 792 nm (BChl a) with intensity ratios of 20:25. The fluorescence emission spectrum has peaks at 748 and 802 nm when excitation is into either the 742 or 450 nm absorption bands, respectively. Whole cells have fluorescence peaks identical to those in chlorosomes with the addition of a major peak observed at 867 nm. The CD spectrum of isolated chlorosomes has an asymmetric-derivative-shaped CD centered at 739 nm suggestive of exciton interaction at least on the level of dimers. Linear dichroism of oriented chlorosomes shows preferential absorption at 742 nm of light polarized parallel to the long axis of the chlorosome. This implies that the transition dipoles are also oriented more or less parallel to the long axis of the chlorosome. Treatment with ferricyanide results in the appearance of a 2.3 G wide ESR spectrum at g 2.002. Whole cells grown under different light conditions exhibit different fluorescence behavior when absorption is normalized at 742 nm. Cells grown under low light conditions have higher fluorescence intensity at 748 nm and lower intensity at 802 nm than cells grown under high light conditions. These results indicate that the BChl c in chlorosomes is highly organized, and transfers energy from BChl c (742 nm) to a connector of baseplate BChl B792 (BChl a) presumably located in the chlorosome baseplate adjacent to the cytoplasmic membrane.  相似文献   
16.
Biotechnology Letters - Colorectal cancer (CRC) is the third most prevalent type of cancer in the United States. The treatment options for cancer include surgery, chemotherapy, radiation,...  相似文献   
17.
Integration of living cells with novel microdevices requires the development of innovative technologies for manipulating cells. Chemical surface patterning has been proven as an effective method to control the attachment and growth of diverse cell populations. Patterning polyelectrolyte multilayers through the combination of layer‐by‐layer self‐assembly technique and photolithography offer a simple, versatile, and silicon compatible approach that overcomes chemical surface patterning limitations, such as short‐term stability and low‐protein adsorption resistance. In this study, direct photolithographic patterning of two types of multilayers, PAA (poly acrylic acid)/PAAm (poly acryl amide) and PAA/PAH (poly allyl amine hydrochloride), were developed to pattern mammalian neuronal, skeletal, and cardiac muscle cells. For all studied cell types, PAA/PAAm multilayers behaved as a cytophobic surface, completely preventing cell attachment. In contrast, PAA/PAH multilayers have shown a cell‐selective behavior, promoting the attachment and growth of neuronal cells (embryonic rat hippocampal and NG108‐15 cells) to a greater extent, while providing little attachment for neonatal rat cardiac and skeletal muscle cells (C2C12 cell line). PAA/PAAm multilayer cellular patterns have also shown a remarkable protein adsorption resistance. Protein adsorption protocols commonly used for surface treatment in cell culture did not compromise the cell attachment inhibiting feature of the PAA/PAAm multilayer patterns. The combination of polyelectrolyte multilayer patterns with different adsorbed proteins could expand the applicability of this technology to cell types that require specific proteins either on the surface or in the medium for attachment or differentiation, and could not be patterned using the traditional methods. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   
18.
19.
Proline (Pro) plays a versatile role in cell metabolism and physiology. Pro and hydroxypro are major imino acids present in collagen, an important connective tissue protein, essential for wound healing, which is a primary response to tissue injury. This study explains the role of l-pro on cutaneous wound healing in rats when administered both topically and orally. Open excision wounds were made on the back of rats, and 200 μl (200 mg) of pro was administered topically and orally once daily to the experimental rats until the wounds healed completely. The control wounds were left untreated. Granulation tissues formed were removed after day 4 and 8 of post excision wounding, and biochemical parameters such as total protein, collagen, hexosamine, and uronic acid were estimated. Levels of enzymatic and non-enzymatic antioxidants such as catalase, superoxide dismutase, glutathione peroxidase, ascorbic acid, and reduced glutathione were evaluated along with lipid peroxides in the granulation tissues. Tensile strength and period of epithelialization were also measured. It was observed that the treated wounds healed very fast as evidenced by augmented rates of epithelialization and wound contraction, which was also confirmed by histological examinations. The results strappingly authenticate the beneficial effects of the topical administration of l-proline in the acceleration of wound healing than the oral administration and control.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号