首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   167篇
  免费   31篇
  国内免费   1篇
  2021年   1篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   4篇
  2014年   3篇
  2013年   5篇
  2012年   6篇
  2011年   5篇
  2010年   11篇
  2009年   8篇
  2008年   6篇
  2007年   11篇
  2006年   10篇
  2005年   12篇
  2004年   9篇
  2003年   7篇
  2002年   5篇
  2001年   8篇
  2000年   10篇
  1999年   2篇
  1998年   6篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1992年   8篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   9篇
  1985年   2篇
  1984年   3篇
  1983年   4篇
  1982年   3篇
  1980年   1篇
  1979年   5篇
  1978年   2篇
  1977年   3篇
  1975年   3篇
  1973年   2篇
  1972年   2篇
  1970年   2篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有199条查询结果,搜索用时 46 毫秒
51.
A replicon from one of an array of seven indigenous compatible plasmids ofBacillus megateriumQM B1551 has been cloned and sequenced. The replicon hybridized with all four of the large plasmids (165, 108, 71, and 47 kb) of strain QM B1551. The cloned 2374-bpHindIII fragment was sequenced and contained two upstream palindromes and a large (>419-amino-acid) open reading frame (ORF) truncated at the 3′ end. Unlike most plasmid origins, a region of four tandem 12-bp direct repeats was located within the ORF. The direct repeats alone were incompatible with the replicon, suggesting that they are iterons and that the plasmid probably replicates by theta replication. The ORF product was shown to act intrans.A small region with similarity to theB. subtilischromosomal origin membrane binding region was detected as were possible binding sites for DnaA and IHF proteins. Deletion analysis showed the minimal replicon to be a 1675-bp fragment containing the incomplete ORF plus 536 bp upstream. The predicted ORF protein of >48 kDa was basic and rich in glutamate + glutamine (16%). There was no significant amino acid similarity to any gene, nor were there any obvious motifs present in the ORF. The data suggest that this is a theta replicon with an expressedrepgene required for replication. The replicon contains its iterons within the gene and has no homology to reported replicons. It is the first characterization of aB. megateriumreplicon.  相似文献   
52.
Using 13C cross-polarization NMR techniques, we have found that the effect of protein on the dynamics of the hydrocarbon interior of a series of biological membranes is to depress the intensity of motion on the nanosecond timescale (i.e., T1 becomes longer) and to enhance the intensity of motion on the timescale of tens of microseconds (i.e., T1p becomes shorter).  相似文献   
53.
Membranes from dormant and heat-activated spores were labelled with the fatty acid spin probe 5-doxyl stearate and analyzed using electron spin resonance spectroscopy. Membranes from dormant spores were slightly less fluid above 23° than membranes from heat-activated spores. Also L-proline caused a much larger increase in the upper transition temperature than did D-proline when added to membranes from heat-activated spores. Thus a compound known to trigger germination in this strain may interact stereospecifically to alter the biophysical properties of the spore membranes.  相似文献   
54.
55.
The first generalized transducing bacteriophage reported for Bacillus megaterium has been characterized. Optimum conditions for lysate production and transduction procedures were established so that transducing frequencies of 8 x 10(-6) and higher are now possible. The phage, MP13, has a head diameter of 97 nm and a contractile tail (202 by 17 nm) and adsorbs to the periphery of the cell. MP13 was inactivated rapidly at 60 degrees C, but not at 55 degrees C, and was sensitive to toluene, ether, and chloroform. When centrifuged in a neutral CsCl gradient, two bands were observed, a major band of 1.490 g cm-3 and a minor band of 1.482 g cm-3 buoyant density. The major band contained only infective particles, whereas the minor band contained both infective and transducing particles. Phage DNA was resistant to several restriction endonucleases, but yielded 9 fragments with MboI, more than 34 with HindIII, and 7 with BstEII. The molecular weights for the fragments from MboI-BstEII double digests total 97 x 10(9).  相似文献   
56.
The present study examined potential mechanisms contributing to the inhibition of protein synthesis in skeletal muscle after administration of endotoxin (LPS). Rats implanted with vascular catheters were injected intravenously with a nonlethal dose of Escherichia coli LPS, and samples were collected at 4 and 24 h thereafter; pair-fed control animals were also included. The rate of muscle (gastrocnemius) protein synthesis in vivo was reduced at both time points after LPS administration. LPS did not alter tissue RNA content, but the translational efficiency was consistently reduced at both time points. To identify mechanisms responsible for regulating translation, we examined several eukaryotic initiation factors (eIFs). The content of eIF2alpha or the amount of eIF2alpha in the phosphorylated form did not change in response to LPS. eIF2B activity was decreased in muscle 4 h post-LPS but activity returned to control values by 24 h. A decrease in the relative amount of eIF2Balpha protein was not responsible for the LPS-induced reduction in eIF2B activity. LPS also markedly altered the distribution of eIF4E in muscle. Compared with control values, LPS-treated rats demonstrated 1) a transient increase in binding of the translation repressor 4E-binding protein-1 (4E-BP1) with eIF4E, 2) a transient decrease in the phosphorylated gamma-form of 4E-BP1, and 3) a sustained decrease in the amount of eIF4G associated with eIF4E. LPS also decreased insulin-like growth factor (IGF) I protein and mRNA expression in muscle at both times. A significant linear relationship existed between muscle IGF-I and the rate of protein synthesis or the amount of eIF4E bound to eIF4G. In summary, these data suggest that LPS impairs muscle protein synthesis, at least in part, by decreasing translational efficiency, resulting from an impairment in translation initiation associated with alterations in both eIF2B activity and eIF4E availability.  相似文献   
57.
Acute alcohol intoxication impairs myocardial protein synthesis in rats, secondary to a diminished mRNA translational efficiency. Decreased mRNA translational efficiency occurs through altered regulation of peptide chain initiation. The purpose of the present set of experiments was to determine whether acute alcohol intoxication alters the phosphorylation state of eukaryotic initiation factor (eIF) 4G, eIF4G.eIF4E complex formation, and the mammalian target of rapamycin (mTOR) signaling pathway in the heart. Acute alcohol intoxication was induced by injection of alcohol (75 mmol/kg body wt ip). Control animals received an equal volume of saline. Alcohol administration enhanced phosphorylation of eIF4G (Ser(1108)) approximately threefold. Alcohol administration lowered formation of the active eIF4G.eIF4E complex by >90%, whereas it increased the abundance of the inactive 4E-binding protein 1 (4E-BP1).eIF4E complex by approximately 160%. Phosphorylation of mTOR on Ser(2448) and Ser(2481) was decreased by 50%. Reduced mTOR phosphorylation did not result from decreased phosphorylation of PKB. Phosphorylation of 4E-BP1 and S6 kinase 1 (Thr(389)), downstream targets of mTOR, were also reduced after acute alcohol administration. These data suggest that acute alcohol-induced impairments in myocardial mRNA translation initiation result, in part, from marked decreases in eIF4G.eIF4E complex formation, which appear to be independent of changes in phosphorylation of eIF4G but dependent on mTOR.  相似文献   
58.
Nutrients enhance signaling pathways involved in skeletal muscle growth through an increased rate of protein synthesis. These studies have led to an understanding of the potential role of the mammalian target of rapamycin (mTOR) in this process. However, activation of mTOR cannot account for all the stimulatory effects of nutrients. The purpose of these experiments was to examine the effect of nutrients on the cellular distribution and activation state of novel PKC isoforms (PKCepsilon and PKCdelta) in the gastrocnemius of rats by use of modification state-dependent phosphopeptide-specific antibodies. The phosphorylation of PKCepsilon on the catalytic domain autophosphorylation site (Ser(729)) was elevated during feeding and then returned to basal levels when the feeding period ended. Meal feeding augmented the phosphorylation of the downstream effectors of mTOR, namely S6K1 and 4E-BP1. In contrast, the phosphorylation of PKCdelta on either the catalytic domain autophosphorylation site (Ser(643)) or activation loop site (Thr(505)) was unaffected. Similar results were obtained when animals were given leucine either acutely via gavage or chronically by dietary supplementations. The effect of leucine was not mimicked by injecting animals with insulin but could be induced by gavage with norleucine, a structural analog of leucine that does not increase plasma insulin concentration. Thus rises in insulin secondary to meal intake or leucine gavage are probably not responsible for increased phosphorylation of PKCepsilon in response to meal feeding. Elevating the leucine concentration stimulated the phosphorylation of PKCepsilon in gastrocnemius from perfused hindlimb and caused a shift in the distribution of PKCepsilon from the membrane fraction to the cytosolic fraction. The results indicate that leucine leads to an activation (autophosphorylation) and subcellular redistribution of PKCepsilon, but not PKCdelta, in gastrocnemius both in vivo and in vitro. Furthermore, activation of the mTOR signaling pathway above basal conditions does not appear to be necessary to induce phosphorylation or translocation of PKCepsilon, suggesting that multiple signaling pathways become activated with leucine.  相似文献   
59.
The hypothesis of the present study was that rats subjected to short-term unilateral hindlimb immobilization would incur skeletal muscle wasting and concomitant alterations in protein synthesis, controllers of translation, and indexes of protein degradation. Rats were unilaterally casted for 1, 3, or 5 days to avoid complications associated with other disuse models. In the casted limb, gastrocnemius wet weight decreased 12% after 3 days and thereafter remained constant. In contrast, the contralateral control leg displayed a steady growth rate over time. The rate of protein synthesis and translational efficiency were unchanged in the immobilized muscle at day 5. The total amount and phosphorylation state of regulators of translational initiation and elongation were unaltered. The mRNA contents of polyubiquitin and the ubiquitin ligases muscle atrophy F-box (MAFbx)/Atrogin-1 and muscle RING finger 1 (MuRF1) were elevated in immobilized muscle at all time points, with peak expression occurring at day 3. Daily injection of the type II glucocorticoid receptor antagonist RU-486 did not prevent decreases in gastrocnemius wet weight nor increases in mRNA for MAFbx/Atrogin-1 and MuRF1. However, in vivo administration of the proteasome inhibitor Velcade prevented 53% of wet weight loss associated with 3 days of immobilization. These data suggest that the loss of skeletal muscle mass in this model of disuse appears to be glucocorticoid independent, can be partially rescued with a potent proteasome inhibitor, and is associated with enhanced mRNA expression of multiple factors that contribute to ubiquitin- proteasome-dependent degradation and are likely to control the remodeling of immobilized skeletal muscle during atrophy.  相似文献   
60.
IGF-I acutely stimulates protein synthesis in cardiac muscle through acceleration of mRNA translation. In the present study, we examined the regulatory signaling pathways and translation protein factors that potentially contribute to the myocardial responsiveness of protein synthesis to IGF-I in vivo. IGF-I was injected IV into rats and 20 min later the hearts were excised and homogenized for assay of regulatory proteins. IGF-I increased assembly of the translationally active eukaryotic initiation factor (eIF)4GeIF4E complex. The increased assembly of eIF4GeIF4E was associated with an enhanced eIF4G phosphorylation and increased availability of eIF4E. Increased availability of eIF4E occurred as a consequence of diminished abundance of the inactive 4E-BP1eIF4E complex following IGF-I. The assembly of the 4E-BP1eIF4E complex appeared to be decreased through an IGF-I-induced phosphorylation of 4E-BP1. IGF-I also caused an increase in the phosphorylation of S6K1. Activation of the potential upstream regulators of 4E-BP1 and S6K1 phosphorylation via PKB and mTOR was also observed. In contrast, there was no effect of IGF-I on phosphorylation of elongation factor (eFE)2. The results suggest the major impact of IGF-I in cardiac muscle occurred via stimulation of translation initiation rather than elongation. Furthermore, the results are consistent with a role for assembly of active eIF4GeIF4E complex and activation of S6K1 in mediating the stimulation of mRNA translation initiation by IGF-I through a PKB/mTOR signaling pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号