首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   770篇
  免费   37篇
  2022年   11篇
  2021年   26篇
  2020年   16篇
  2019年   22篇
  2018年   14篇
  2017年   14篇
  2016年   25篇
  2015年   38篇
  2014年   41篇
  2013年   48篇
  2012年   56篇
  2011年   60篇
  2010年   45篇
  2009年   38篇
  2008年   35篇
  2007年   40篇
  2006年   40篇
  2005年   21篇
  2004年   20篇
  2003年   17篇
  2002年   15篇
  2001年   11篇
  2000年   9篇
  1999年   11篇
  1998年   6篇
  1997年   5篇
  1996年   5篇
  1995年   4篇
  1994年   3篇
  1993年   5篇
  1992年   11篇
  1990年   10篇
  1988年   5篇
  1987年   10篇
  1986年   5篇
  1985年   6篇
  1983年   7篇
  1982年   3篇
  1981年   4篇
  1980年   4篇
  1978年   2篇
  1975年   3篇
  1974年   5篇
  1973年   2篇
  1971年   2篇
  1970年   2篇
  1967年   3篇
  1966年   3篇
  1962年   2篇
  1959年   2篇
排序方式: 共有807条查询结果,搜索用时 343 毫秒
731.
Three-dimensional QSAR studies for N-4-arylacryloylpiperazin-1-yl-phenyl-oxazolidinones were conducted using TSAR 3.3. The in vitro activities (MICs) of the compounds against Staphylococcus aureus ATCC 25923 exhibited a strong correlation with the prediction made by the model developed in the present study.  相似文献   
732.
BACKGROUND: The linkage between duplicated chromosomes (sister chromatids) is established during S phase by the action of cohesin, a multisubunit complex conserved from yeast to humans. Most cohesin dissociates from chromosome arms when the cell enters mitotic prophase, leading to the formation of metaphase chromosomes with two cytologically discernible chromatids. This process is known as sister-chromatid resolution. Although two mitotic kinases have been implicated in this process, it remains unknown exactly how the cohesin-mediated linkage is destabilized at a mechanistic level. RESULTS: The wings apart-like (Wapl) protein was originally identified as a gene product that potentially regulates heterochromatin organization in Drosophila melanogaster. We show that the human ortholog of Wapl is a cohesin-binding protein that facilitates cohesin's timely release from chromosome arms during prophase. Depletion of Wapl from HeLa cells causes transient accumulation of prometaphase-like cells with chromosomes that display poorly resolved sister chromatids with a high level of cohesin. Reduction of cohesin relieves the Wapl-depletion phenotype, and depletion of Wapl rescues premature sister separation observed in Sgo1-depleted or Esco2-depleted cells. Conversely, overexpression of Wapl causes premature separation of sister chromatids. Wapl physically associates with cohesin in HeLa-cell nuclear extracts. Remarkably, in vitro reconstitution experiments demonstrate that Wapl forms a stoichiometric, ternary complex with two regulatory subunits of cohesin, implicating its noncatalytic function in inactivating cohesin's ability to interact with chromatin. CONCLUSIONS: Wapl is a new regulator of sister chromatid resolution and promotes release of cohesin from chromosomes by directly interacting with its regulatory subunits.  相似文献   
733.
DNA fingerprinting is a powerful technology that has revolutionized forensic science. No two individuals can have an identical DNA pattern except identical twins. Such DNA-based technologies have enormous social implications and can help in the fight against crime. This technology has experienced many changes over time with many advancements occurring. DNA testing is a matter of serious concern as it involves ethical issues. This article describes various trends in DNA fingerprinting and the current technology used in DNA profiling, possible uses and misuses of DNA databanks and ethical issues involved in DNA testing. Limitations and problems prevailing in this field are highlighted.  相似文献   
734.
P-type ATPases function to provide homeostasis in higher eukaryotes, but they are essentially ubiquitous, being found in all domains of life. Thever and Saier [J Memb Biol 2009;229:115-130] recently reported analyses of eukaryotic P-type ATPases, dividing them into nine functionally characterized and 13 functionally uncharacterized (FUPA) families. In this report, we analyze P-type ATPases in all major prokaryotic phyla for which complete genome sequence data are available, and we compare the results with those for eukaryotic P-type ATPases. Topological type I (heavy metal) P-type ATPases predominate in prokaryotes (approx. tenfold) while type II ATPases (specific for Na(+),K(+), H(+) Ca(2+), Mg(2+) and phospholipids) predominate in eukaryotes (approx. twofold). Many P-type ATPase families are found exclusively in prokaryotes (e.g. Kdp-type K(+) uptake ATPases (type III) and all ten prokaryotic FUPA familes), while others are restricted to eukaryotes (e.g. phospholipid flippases and all 13 eukaryotic FUPA families). Horizontal gene transfer has occurred frequently among bacteria and archaea, which have similar distributions of these enzymes, but rarely between most eukaryotic kingdoms, and even more rarely between eukaryotes and prokaryotes. In some bacterial phyla (e.g. Bacteroidetes, Flavobacteria and Fusobacteria), ATPase gene gain and loss as well as horizontal transfer occurred seldom in contrast to most other bacterial phyla. Some families (i.e. Kdp-type ATPases) underwent far less horizontal gene transfer than other prokaryotic families, possibly due to their multisubunit characteristics. Functional motifs are better conserved across family lines than across organismal lines, and these motifs can be family specific, facilitating functional predictions. In some cases, gene fusion events created P-type ATPases covalently linked to regulatory catalytic enzymes. In one family (FUPA Family 24), a type I ATPase gene (N-terminal) is fused to a type II ATPase gene (C-terminal) with retention of function only for the latter. Several pseudogene-encoded nonfunctional ATPases were identified. Genome minimalization led to preferential loss of P-type ATPase genes. We suggest that in prokaryotes and some unicellular eukaryotes, the primary function of P-type ATPases is protection from extreme environmental stress conditions. The classification of P-type ATPases of unknown function into phylogenetic families provides guides for future molecular biological studies.  相似文献   
735.
736.
Simple sequence repeats (SSRs) are present abundantly in most eukaryotic genomes. They affect several cellular processes like chromatin organization, regulation of gene activity, DNA repair, DNA recombination, etc. Though considerable data exists on using nuclear SSRs to infer phylogenetic relationships, the potential of chloroplast microsatellites (cpSSR), in this regard, remains largely unexplored. In the present study we probe various nucleotide repeat motifs (NRMs) / types of SSRs present in chloroplast genomes (cpDNA) of 12 species belonging to Brassicaceae family. NRMs show a non-random distribution in coding and non-coding compartments of cpDNA. As expected, trinucleotide repeats are more common in coding regions while other repeat motifs are prominent in non-coding DNA. Total numbers of SSRs in coding region show little variation between species while considerable variation is exhibited by SSRs in non-coding regions. Finally, we have designed universal primers that yield polymorphic amplicons from all 12 species. Our analysis also suggests that amplicon length polymorphism shows no significant relationship with sequence based phylogeny of SSRs in cpDNA of Brassicaceae family.  相似文献   
737.
Loss of cardioprotection by adenosine in hearts stressed by transient ischemia may be due to its effects on glucose metabolism. In the absence of transient ischemia, adenosine inhibits glycolysis, whereas it accelerates glycolysis after transient ischemia. Inasmuch as 5'-AMP-activated protein kinase (AMPK) is implicated as a regulator of glucose and fatty acid utilization, this study determined whether a differential alteration of AMPK activity contributes to acceleration of glycolysis by adenosine in hearts stressed by transient ischemia. Studies were performed in working rat hearts perfused aerobically under normal conditions or after transient ischemia (two 10-min periods of ischemia followed by 5 min of reperfusion). LV work was not affected by adenosine. AMPK phosphorylation was not affected by transient ischemia; however, phosphorylation and activity were increased nine- and threefold, respectively, by adenosine in stressed hearts. Phosphorylation of acetyl-CoA carboxylase and rates of palmitate oxidation were unaltered. Glycolysis and calculated proton production were increased 1.8- and 1.7-fold, respectively, in hearts with elevated AMPK activity. Elevated AMPK activity was associated with inhibition of glycogen synthesis and unchanged rates of glucose uptake and glycogenolysis. Phentolamine, an alpha-adrenoceptor antagonist, which prevents adenosine-induced activation of glycolysis in stressed hearts, prevented AMPK phosphorylation. These data demonstrate that adenosine-induced activation of AMPK after transient ischemia is not sufficient to alter palmitate oxidation or glucose uptake. Rather, activation of AMPK alters partitioning of glucose away from glycogen synthesis; the increase in glycolysis may in part contribute to loss of adenosine-induced cardioprotection in hearts subjected to transient ischemia.  相似文献   
738.
A thiosulfate-oxidizing facultative chemolithoautotrophic Burkholderia sp. strain ATSB13T was previously isolated from rhizosphere soil of tobacco plant. Strain ATSB13T was aerobic, Gram-staining-negative, rod shaped and motile by means of sub-terminal flagellum. Strain ATSB13T exhibited mixotrophic growth in a medium containing thiosulfate plus acetate. A phylogenetic study based on 16S rRNA gene sequence analysis indicated that strain ATSB13T was most closely related to Burkholderia kururiensis KP23T (98.7%), Burkholderia tuberum STM678T (96.5%) and Burkholderia phymatum STM815T (96.4%). Chemotaxonomic data [G+C 64.0 mol%, major fatty acids, C18:1 ω7c (28.22%), C16:1 ω7c/15 iso 2OH (15.15%), and C16:0 (14.91%) and Q-8 as predominant respiratory ubiquinone] supported the affiliation of the strain ATSB13T within the genus Burkholderia. Though the strain ATSB13T shared high 16S rRNA gene sequence similarity with the type strain of B. kururiensis but considerably distant from the latter in terms of several phenotypic and chemotaxonomic characteristics. DNA–DNA hybridization between strain ATSB13T and B. kururiensis KP23T was 100%, and hence, it is inferred that strain ATSB13T is a member of B. kururiensis. On the basis of data obtained from this study, we propose that B. kururiensis be subdivided into B. kururiensis subsp. kururiensis subsp. nov. (type strain KP23T = JCM 10599T = DSM 13646T) and B. kururiensis subsp. thiooxydans subsp. nov. (type strain ATSB13T = KACC 12758T).  相似文献   
739.
740.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号