首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   355篇
  免费   14篇
  2023年   2篇
  2022年   7篇
  2021年   20篇
  2020年   8篇
  2019年   10篇
  2018年   6篇
  2017年   8篇
  2016年   12篇
  2015年   24篇
  2014年   21篇
  2013年   28篇
  2012年   21篇
  2011年   25篇
  2010年   16篇
  2009年   16篇
  2008年   21篇
  2007年   17篇
  2006年   19篇
  2005年   10篇
  2004年   13篇
  2003年   14篇
  2002年   7篇
  2001年   4篇
  2000年   8篇
  1999年   5篇
  1997年   5篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1992年   6篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1985年   3篇
  1983年   1篇
  1976年   1篇
  1975年   1篇
  1969年   1篇
排序方式: 共有369条查询结果,搜索用时 468 毫秒
341.
Antibody therapeutics have revolutionized the treatment of cancer over the past two decades. Antibodies that specifically bind tumor surface antigens can be effective therapeutics; however, many unmodified antibodies lack therapeutic activity. These antibodies can instead be applied successfully as guided missiles to deliver potent cytotoxic drugs in the form of antibody drug conjugates (ADCs). The success of ADCs is dependent on four factors—target antigen, antibody, linker, and payload. The field has made great progress in these areas, marked by the recent approval by the US Food and Drug Administration of two ADCs, brentuximab vedotin (Adcetris®) and ado-trastuzumab emtansine (Kadcyla®). However, the therapeutic window for many ADCs that are currently in pre-clinical or clinical development remains narrow and further improvements may be required to enhance the therapeutic potential of these ADCs. Production of ADCs is an area where improvement is needed because current methods yield heterogeneous mixtures that may include 0–8 drug species per antibody molecule. Site-specific conjugation has been recently shown to eliminate heterogeneity, improve conjugate stability, and increase the therapeutic window. Here, we review and describe various site-specific conjugation strategies that are currently used for the production of ADCs, including use of engineered cysteine residues, unnatural amino acids, and enzymatic conjugation through glycotransferases and transglutaminases. In addition, we also summarize differences among these methods and highlight critical considerations when building next-generation ADC therapeutics.  相似文献   
342.
343.
NHERF1, NHERF2, and NHERF3 belong to the NHERF (Na+/H+ exchanger regulatory factor) family of PSD-95/Discs-large/ZO-1 (PDZ) scaffolding proteins. Individually, each NHERF protein has been shown to be involved in the regulation of multiple receptors or transporters including Na+/H+ exchanger 3 (NHE3). Although NHERF dimerizations have been reported, results have been inconsistent, and the physiological function of NHERF dimerizations is still unknown. The current study semiquantitatively compared the interaction strength among all possible homodimerizations and heterodimerizations of these three NHERF proteins by pulldown and co-immunoprecipitation assays. Both methods showed that NHERF2 and NHERF3 heterodimerize as the strongest interaction among all NHERF dimerizations. In vivo NHERF2/NHERF3 heterodimerization was confirmed by FRET and FRAP (fluorescence recovery after photobleach). NHERF2/NHERF3 heterodimerization is mediated by PDZ domains of NHERF2 and the C-terminal PDZ domain recognition motif of NHERF3. The NHERF3-4A mutant is defective in heterodimerization with NHERF2 and does not support the inhibition of NHE3 by carbachol. This suggests a role for NHERF2/NHERF3 heterodimerization in the regulation of NHE3 activity. In addition, both PDZ domains of NHERF2 could be simultaneously occupied by NHERF3 and another ligand such as NHE3, α-actinin-4, and PKCα, promoting formation of NHE3 macrocomplexes. This study suggests that NHERF2/NHERF3 heterodimerization mediates the formation of NHE3 macrocomplexes, which are required for the inhibition of NHE3 activity by carbachol.  相似文献   
344.
The lysosome is an essential organelle to recycle cellular materials and maintain nutrient homeostasis, but the mechanism to down-regulate its membrane proteins is poorly understood. In this study, we performed a cycloheximide (CHX) chase assay to measure the half-lives of approximately 30 human lysosomal membrane proteins (LMPs) and identified RNF152 and LAPTM4A as short-lived membrane proteins. The degradation of both proteins is ubiquitin dependent. RNF152 is a transmembrane E3 ligase that ubiquitinates itself, whereas LAPTM4A uses its carboxyl-terminal PY motifs to recruit NEDD4-1 for ubiquitination. After ubiquitination, they are internalized into the lysosome lumen by the endosomal sorting complexes required for transport (ESCRT) machinery for degradation. Strikingly, when ectopically expressed in budding yeast, human RNF152 is still degraded by the vacuole (yeast lysosome) in an ESCRT-dependent manner. Thus, our study uncovered a conserved mechanism to down-regulate lysosome membrane proteins.

A study of how lysosomal membrane proteins are down-regulated reveals a conserved pathway involving ubiquitination of the membrane protein and subsequent internalization into the lysosome lumen by the ESCRT machinery for degradation.  相似文献   
345.
346.
DNA fingerprinting is a powerful technology that has revolutionized forensic science. No two individuals can have an identical DNA pattern except identical twins. Such DNA-based technologies have enormous social implications and can help in the fight against crime. This technology has experienced many changes over time with many advancements occurring. DNA testing is a matter of serious concern as it involves ethical issues. This article describes various trends in DNA fingerprinting and the current technology used in DNA profiling, possible uses and misuses of DNA databanks and ethical issues involved in DNA testing. Limitations and problems prevailing in this field are highlighted.  相似文献   
347.
Chironomid larvae (2.0 individuals/cm2) were introduced in sediment–water microcosms of 3.0 l capacity to assess the impact of bioturbation on phosphorus flux across sediment–water interface, under different nutrient-enriched conditions. Recruitment of chironomid resulted in 21% and 19% increase in aquatic orthophosphate and nitrate quanta, respectively, with concomitant decrease in nutrient concentration in the sediment compared to macrofauna-free controls under mesotrophic condition. It implied that cost of fertilizer for biological production could be curtailed by at least 19–21% by recovering nutrients stored in the sediment pool. Bioturbation-induced orthophosphate flux under chironomid impacted mesotrophic treatment was 2.3- and 1.8-fold greater than that under bioturbated eutrophic treatment, suggesting that the macrofaunal impact was reduced in the presence of higher nutrient load perhaps due to physicochemical stressors under eutrophic condition. Nevertheless, chironomid larvae can further accelerate nutrient enrichment in the eutrophic system that may invite a “snow ball effect” towards a hypereutrophic one. The counts of both heterotrophic and phosphate solubilizing bacteria show strong positive correlation with orthophosphate concentration in water and the correlation also exists between organic carbon concentration in sediment and phosphate in overlying water. This implied that the accelerated phosphate flux was the result of coordinated eco-engineering activities of chironomid larvae and microbe-mediated mineralization of organic matter.  相似文献   
348.
349.
To evaluate the possibility of improved drug delivery of quetiapine fumarate (QTP), a nanoemulsion system was developed for intranasal delivery. Effects of different HLBs of Emalex LWIS 10, PEG 400 and Transcutol P, as co-surfactants, were studied on isotropic region of pseudoternary-phase diagrams of nanoemulsion system composed of capmul MCM (CPM) as oil phase, Tween 80 as surfactant and water. Phase behaviour, globule size, transmission electron microscope (TEM) photographs and brain-targeting efficiency of quetiapine nanoemulsion were investigated. In vitro dissolution study of optimised nanoemulsion formulation, with mean diameter 144?±?0.5 nm, showed more than twofold increase in drug release as compared with pure drug. According to results of in vivo tissue distribution study in Wistar rats, intranasal administration of QTP-loaded nanoemulsion had shorter T max compared with that of intravenous administration. Higher drug transport efficiency (DTE%) and direct nose-to-brain drug transport (DTP%) was achieved by nanoemulsion. The nanoemulsion system may be a promising strategy for brain-targeted delivery of QTP.  相似文献   
350.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号