首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   290篇
  免费   35篇
  325篇
  2021年   7篇
  2019年   3篇
  2018年   2篇
  2016年   4篇
  2015年   9篇
  2014年   13篇
  2013年   7篇
  2012年   14篇
  2011年   23篇
  2010年   13篇
  2009年   10篇
  2008年   10篇
  2007年   18篇
  2006年   13篇
  2005年   8篇
  2004年   13篇
  2003年   17篇
  2002年   15篇
  2001年   5篇
  2000年   6篇
  1999年   5篇
  1998年   6篇
  1996年   2篇
  1994年   4篇
  1993年   2篇
  1992年   6篇
  1991年   4篇
  1990年   2篇
  1988年   5篇
  1986年   3篇
  1985年   11篇
  1984年   7篇
  1983年   4篇
  1981年   4篇
  1980年   3篇
  1979年   4篇
  1978年   4篇
  1977年   3篇
  1976年   5篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1972年   3篇
  1971年   1篇
  1970年   4篇
  1969年   4篇
  1968年   2篇
  1967年   4篇
  1966年   1篇
  1965年   1篇
排序方式: 共有325条查询结果,搜索用时 15 毫秒
11.
12.
Objective: Previous studies have suggested that obesity enhances the inflammatory response, producing macromolecules involved in the induction and/or maintenance of increased erythrocyte aggregation. The objectives of this study were to evaluate the correlation between inflammation markers, erythrocyte adhesiveness/aggregation, and the degree of obesity and to assess phosphatidylserine expression on erythrocyte surface membrane of obese vs. nonobese individuals. Research Methods and Procedures: Erythrocyte adhesiveness/aggregation in the peripheral venous blood was evaluated by using a new biomarker, phosphatidylserine expression was assessed by means of flow cytometry, and markers of inflammation were measured in 65 subjects: 30 obese [body mass index (BMI) = 41 ± 7.7 kg/m2] and 35 nonobese (BMI = 24 ± 2.7 kg/m2) individuals. Pearson correlations and Student's t test were performed. Results: A highly significant difference was noted in the degree of erythrocyte adhesiveness/aggregation and markers of inflammation between the study groups. BMI correlated with erythrocyte adhesiveness/aggregation (r = 0.42, p = 0.001), erythrocyte sedimentation rate (r = 0.42, p = 0.001), high‐sensitive C‐reactive protein (r = 0.55, p < 10?4), fibrinogen (r = 0.37, p = 0.004), and white blood cell count (r = 0.45, p < 10?4). The degree of erythrocyte adhesiveness/aggregation correlated with erythrocyte sedimentation rate (r = 0.5, p < 10?4), high‐sensitive C‐reactive protein (r = 0.56, p < 10?4), fibrinogen (r = 0.54, p < 10?4), and white blood cell count (r = 0.32, p = 0.01). Discussion: Our results suggest that obesity‐related erythrocyte adhesiveness/aggregation is probably mediated through increased concentrations of adhesive macromolecules in the circulation and not necessarily through hyperlipidemia or phosphatidylserine exposure on erythrocyte's membrane.  相似文献   
13.
Human disorders of phosphate (Pi) handling and hypophosphatemic rickets have been shown to result from mutations in PHEX, FGF23, and DMP1, presenting as X-linked recessive, autosomal-dominant, and autosomal-recessive patterns, respectively. We present the identification of an inactivating mutation in the ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) gene causing autosomal-recessive hypophosphatemic rickets (ARHR) with phosphaturia by positional cloning. ENPP1 generates inorganic pyrophosphate (PPi), an essential physiologic inhibitor of calcification, and previously described inactivating mutations in this gene were shown to cause aberrant ectopic calcification disorders, whereas no aberrant calcifications were present in our patients. Our surprising result suggests a different pathway involved in the generation of ARHR and possible additional functions for ENPP1.  相似文献   
14.
The activity of transglutaminase (TG) was examined in the rat superior cervical ganglion (SCG) during development and after postganglionic nerve crush. During postnatal development the enzyme activity is increased by sevenfold in parallel to protein content of the ganglion and reaches adult levels by day 35 after birth. The endogenous activity (enzyme activity assayed in the absence of the exogenous substrate) during development is transiently elevated with a peak at day 21 postnatal. In the adult ganglion the enzyme specific activity is evenly distributed in all subcellular compartments, but most of it is contained in the cytosol. Within the first hour after axotomy TG activity is rapidly and transiently elevated. The peak value, 80% above control levels, is attained by 30 min postoperative. At this time the activity is increased in all subcellular fractions, but the endogenous activity is selectively increased in the fraction containing nuclei. The enhanced TG activity after axotomy can be prevented by topical treatments with verapamil, an inhibitor of voltage-dependent calcium fluxes across excitable membranes, or with the calcium chelator EGTA. The results show that intracellular TG activity is present in the SCG and that it increases with postnatal growth of the ganglion. After axotomy the enzyme activity is rapidly and transiently increased in the ganglion and this elevation critically depends on calcium fluxes.  相似文献   
15.
We have cloned and analyzed the sugar-beet mitochondrial gene for cytochrome oxidase subunit II (coxII). The sugar-beet and its deduced amino acid sequence were compared to its homologouscoxII gene sequences from both monocot and dicot plants. It was found to be highly conserved (89–95%) compared to homologue in other plant species. The 780 bp coding sequence of the sugar beetcoxII gene is interrupted at position 383 by a 1463 bp intron. This intron contains an additional 107 bp sequence that is not found in any of the plantcoxII genes studied thus far. The structure of the intron suggests that a large intron existed in an ancestralcoxII gene before monocots and dicots diverged in evolution. Three CGG codons in the sugar-beetcoxII coding sequence align with conserved tryptophan residues in the homologous gene of other species, suggesting that RNA editing takes place also in sugar-beet mitochondria. In 13 out of 24 codons ofcoxII mRNA that were found to be edited in four other plants, the sugar-beet gene already utilizes the edited codons. This phenomenon may indicate that the mitochondrial genome in sugar-beet is phylogenetically more archaic relative to these plants. An additional sequence of 279 bp that is identical to the first exon ofcoxII was identified in the mtDNA of the sugar-beet. This pseudo-gene is transcribed and its existence in the mitochondrial genome is unexplained.  相似文献   
16.
Intracellular trafficking of the precursor of Spitz (Spi), the major Drosophila EGF receptor (EGFR) ligand, is facilitated by the chaperone Star, a type II transmembrane protein. This study identifies a novel mechanism for modulating the activity of Star, thereby influencing the levels of active Spi ligand produced. We demonstrate that Star can efficiently traffic Spi even when present at sub-stoichiometric levels, and that in Drosophila S(2)R(+) cells, Spi is trafficked from the endoplasmic reticulum to the late endosome compartment, also enriched for Rhomboid, an intramembrane protease. Rhomboid, which cleaves the Spi precursor, is now shown to also cleave Star within its transmembrane domain both in cell culture and in flies, expanding the repertoire of known Rhomboid substrates to include both type I and type II transmembrane proteins. Cleavage of Star restricts the amount of Spi that is trafficked, and may explain the exceptional dosage sensitivity of the Star locus in flies.  相似文献   
17.
18.
19.
Plants are subjected to fluctuations in light intensity, and this might cause unbalanced photosynthetic electron fluxes and overproduction of reactive oxygen species (ROS). Electrons needed for ROS detoxification are drawn, at least partially, from the cellular glutathione (GSH) pool via the ascorbate–glutathione cycle. Here, we explore the dynamics of the chloroplastic glutathione redox potential (chl-EGSH) using high-temporal-resolution monitoring of Arabidopsis (Arabidopsis thaliana) lines expressing the reduction–oxidation sensitive green fluorescent protein 2 (roGFP2) in chloroplasts. This was carried out over several days under dynamic environmental conditions and in correlation with PSII operating efficiency. Peaks in chl-EGSH oxidation during dark-to-light and light-to-dark transitions were observed. Increasing light intensities triggered a binary oxidation response, with a threshold around the light saturating point, suggesting two regulated oxidative states of the chl-EGSH. These patterns were not affected in npq1 plants, which are impaired in non-photochemical quenching. Oscillations between the two oxidation states were observed under fluctuating light in WT and npq1 plants, but not in pgr5 plants, suggesting a role for PSI photoinhibition in regulating the chl-EGSH dynamics. Remarkably, pgr5 plants showed an increase in chl-EGSH oxidation during the nights following light stresses, linking daytime photoinhibition and nighttime GSH metabolism. This work provides a systematic view of the dynamics of the in vivo chloroplastic glutathione redox state during varying light conditions.

Monitoring the daily in vivo dynamics of the chloroplastic GSH redox state in light-stressed wild-type plants versus photoprotective mutants provides insight into the photosynthesis-dependent production of oxidants.  相似文献   
20.
Myoblast fusion provides a fundamental, conserved mechanism for muscle fiber growth. We demonstrate here that the functional contribution of Wsp, the Drosophila homolog of the conserved actin nucleation-promoting factor (NPF) WASp, is essential for myoblast fusion during the formation of muscles of the adult fly. Disruption of Wsp function results in complete arrest of myoblast fusion in all muscles examined. Wsp activity during adult Drosophila myogenesis is specifically required for muscle cell fusion and is crucial both for the formation of new muscle fibers and for the growth of muscles derived from persistent larval templates. Although Wsp is expressed both in fibers and individual myoblasts, its activity in either one of these cell types is sufficient. SCAR, a second major Arp2/3 NPF, is also required during adult myoblast fusion. Formation of fusion-associated actin 'foci' is dependent on Arp2/3 complex function, but appears to rely on a distinct, unknown nucleator. The comprehensive nature of these requirements identifies Arp2/3-based branched actin polymerization as a universal mechanism underlying myoblast fusion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号