首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   0篇
  2022年   1篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   6篇
  2012年   7篇
  2011年   9篇
  2010年   5篇
  2009年   3篇
  2008年   3篇
  2007年   6篇
  2006年   5篇
  2005年   4篇
  2004年   3篇
  2003年   4篇
  2002年   7篇
  2001年   1篇
  2000年   3篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1985年   1篇
  1984年   1篇
  1982年   3篇
  1965年   3篇
排序方式: 共有96条查询结果,搜索用时 15 毫秒
31.
The grey-lethal mouse (gl/gl) mutant most closely resembles the severe human malignant autosomal recessive OSTM1-dependent form of osteopetrosis that it has been described to be associated with neurological abnormalities. For this reason, we have analyzed the brain lipid composition (gangliosides, neutral glycosphingolipids, phospholipids and cholesterol), from gl/gl mice at different ages of development and compared with wild type mice. Both cholesterol and glycerophospholipid content and pattern in the gl/gl and control mice were very similar. In contrast, significant differences were observed in the content of several sphingolipids. Higher amount of the monosialogangliosides GM2 and GM3, and lower content of sphingomyelin, sulfatide and galactosylceramide were observed in the gl/gl brain with respect to controls. The low content of sphingomyelin, sulfatide and galactosylceramide is consistent with the immunohistochemical results showing that in the grey-lethal brain significant depletion and disorganization of the myelinated fibres is present, thus supporting the hypothesis that loss of function of the OSTM1 causes neuronal impairment and myelin deficit.  相似文献   
32.
Human fibroblasts from normal subjects and Niemann-Pick A (NPA) disease patients were fed with two labeled metabolic precursors of sphingomyelin (SM), [3H]choline and photoactivable sphingosine, that entered into the biosynthetic pathway allowing the synthesis of radioactive phosphatidylcholine and SM, and of radioactive and photoactivable SM ([3H]SM-N3). Detergent resistant membrane (DRM) fractions prepared from normal and NPA fibroblasts resulted as highly enriched in [3H]SM-N3. However, lipid and protein analysis showed strong differences between the two cell types. After cross-linking, different patterns of SM-protein complexes were found, mainly associated with the detergent soluble fraction of the gradient containing most cell proteins. After cell surface biotinylation, DRMs were immunoprecipitated using streptavidin. In conditions that maintain the integrity of domain, SM-protein complexes were detectable only in normal fibroblasts, whereas disrupting the membrane organization, these complexes were not recovered in the immunoprecipitate, suggesting that they involve proteins belonging to the inner membrane layer. These data suggest that differences in lipid and protein compositions of these cell lines determine specific lipid-protein interactions and different clustering within plasma membrane. In addition, our experiments show that photoactivable sphingolipids metabolically synthesized in cells can be used to study sphingolipid protein environments and sphingolipid-protein interactions.  相似文献   
33.
Treatment with methyl-beta-cyclodextrin (MCD) induced a time- and dose-dependent efflux of cholesterol, sphingolipids, and phosphatidylcholine (PC) from cerebellar neurons differentiated in culture. With a "mild" treatment, the loss of cell lipids induced a deep reorganization of the remaining membrane lipids. In fact, the amount of PC associated with a Triton X-100-insoluble membrane fraction (highly enriched in sphingolipids and cholesterol in nontreated cells) was lowered by the treatment. This suggested a reduction of the lipid domain area. However, the cholesterol and sphingolipid enrichment of this fraction remained substantially unchanged, suggesting the existence of dynamic processes aimed at preserving the segregation of cholesterol and sphingolipids in membrane domains. Under these conditions, the lipid membrane domains retained the ability to sort signaling proteins, such as Lyn and c-Src, but cells displayed deep alterations in their membrane permeability. However, normal membrane permeability was restored by loading cells with cholesterol. When MCD treatment was more stringent, a large loss of cell lipids occurred, and the lipid domains were much less enriched in cholesterol and lost the ability to sort specific proteins. The loss of the integrity and properties of lipid domains was accompanied by severe changes in the membrane permeability, distress, and eventually cell death.  相似文献   
34.
In this study we show that the ganglioside content and pattern of human skin fibroblasts change along the process of cell subculture progression by varying the cell density.GM3, GD3 and GD1a were components of the total cell ganglioside mixtures extracted from cells, but GD1a was in all the extracts a minor component or very scant. Other gangliosides present in traces were not characterised. The fibroblast ganglioside content of 52 pools of cells obtained from 5 different cell lines cultured at variable cell density ranged from 2.0 to 13.1 nmoles per mg of cell protein. The molar ratio between GM3 and GD3 varied from 418 to 0.6 in the ganglioside mixtures, as determined by densitometric quantitative analysis after thin layer chromatographic separation.Both the ganglioside content and the GM3/GD3 molar ratio were constant along several passages of subculture progression performed by plating cells collected at confluence. Instead, when the subculture progression was performed by plating cells collected at a few days after reaching confluence, a progressive increase of the ganglioside content was observed. GD3 increased proportionally more than GM3 so that a progressive decrease of the ratio between GM3 and GD3 was observed. In some experiments, GD3 was very scant at the beginning of the progression, while it was near 30% after 5 passages under these conditions. The progressive increase of GD3 along the high density cell population subculture progression was associated to a moderate increase of the mRNA GD3 synthase. Published in 2003.  相似文献   
35.
In this paper, we show that caveolin-1 is abundantly present in a cell line of immortalized gonadotropin-releasing hormone-expressing neurons (GN11). In contrast to GN11, caveolin is undetectable in a cognate cell line of immortalized gonadotropin-releasing hormone-secreting neurons (GT1-7). These two cell lines are characterized by a radically different sphingolipid metabolism. After incubation in the presence of tracer amount of [1-3H]sphingosine, GN11 and GT1-7 neurons incorporated similar amounts of radioactivity. In GT1-7 neurons, [1-3H]sphingosine metabolism was markedly oriented toward the biosynthesis of complex sphingolipids. In fact, almost all the radioactivity in the lipid extracts from GT1-7 cells was associated with biosynthetic products (ceramide, sphingomyelin, and glycosphingolipids). In particular glycosphingolipids represented more than 65% of total lipid radioactivity in these cells, and the main glycosphingolipid was GM3 ganglioside (about 47% of total lipid radioactivity). In the case of GN11 neurons, a high portion of [1-3H]sphingosine underwent complete degradation, as indicated by the formation of high levels of radioactive phosphatidylethanolamine (about 23% of lipid radioactivity). Moreover, the main complex sphingolipid in GN11 neurons was not a glycolipid, but sphingomyelin (its level in these cells, about 54% of lipid radioactivity, was two-fold higher than in GT1-7). Glycolipids, gangliosides in particular, were present in low amount (9.5% of lipid radioactivity) if compared with the cognate GT1-7 cell line, and GM3 was almost absent in GN11 neurons. Despite the radical differences in ganglioside and caveolin content, from both cell types a membrane fraction similarly enriched in sphingolipids was prepared. In the case of GN11 cells, this fraction was also enriched in caveolin. The presence of caveolin or GM3 may correlate with different functional properties linked to the stage of neuronal maturation, since GN11 and GT1-7 are representative, respectively, of immature, migrating, and differentiated, postmigratory gonadotropin-releasing hormone-positive neurons.  相似文献   
36.
We have investigated the ability of a receptor-mediated gene transfer strategy (cross-correction) to restore ganglioside metabolism in fibroblasts from Tay-Sachs (TS) patients in vitro. TS disease is a GM2 gangliosidosis attributed to the deficiency of the lysosomal enzyme beta-hexosaminidase A (HexA) (beta-N-acetylhexosaminidase, EC ). The hypothesis is that transduced cells overexpressing and secreting large amounts of the enzyme would lead to a measurable activity in defective cells via a secretion-recapture mechanism. We transduced NIH3T3 murine fibroblasts with the LalphaHexTN retroviral vector carrying the cDNA encoding for the human Hex alpha-subunit. The Hex activity in the medium from transduced cells was approximately 10-fold higher (up to 75 milliunits) than observed in non-transduced cells. TS cells were cultured for 72 h in the presence of the cell medium derived from the transduced NIH3T3 cells, and they were analyzed for the presence and catalytic activity of the enzyme. Although TS cells were able to efficiently uptake a large amount of the soluble enzyme, the enzyme failed to reach the lysosomes in a sufficient quantity to hydrolyze the GM2 ganglioside to GM3 ganglioside. Thus, our results showed that delivery of the therapeutic HexA was not sufficient to correct the phenotype of TS cells.  相似文献   
37.
Abstract: Changes in the ganglioside long-chain base (LCB) composition in rat cerebellar granule cells in culture were studied during differentiation and aging. The total native ganglioside mixtures, extracted from the cells maintained in culture up to 22 days, were fractionated by reversed-phase HPLC, each ganglioside homogeneous in the oligosaccharide chain as well as in the LCB being quantified. Two main LCBs were components of the ganglioside species of cultured cells, the C18:1 LCB and the C20:1 LCB. The content of C20:1 ganglioside molecular species was low and quite constant during differentiation, comprising ∼8% of the total ganglioside species content, the C20:1 LCB appearing to be represented more in the ganglioside of the "b series" (GD1b, GT1b, and GQ1b) than in the "a series" (GM1 and GD1a). During aging in culture, for 8–22 days, the content of the C20:1 species of all gangliosides increased, being more pronounced for GM1 and GD1a.  相似文献   
38.
We studied the membrane environment of cellular prion protein in primary cultured rat cerebellar neurons differentiated in vitro. In these cells, about 45% of total cellular prion protein (corresponding to a 35-fold enrichment) is associated with a low-density, sphingolipid- and cholesterol-enriched membrane fraction, that can be separated by flotation on sucrose gradient. Biotinylation experiments indicated that almost all prion protein recovered in this fraction was exposed at the cell surface. Prion protein was efficiently separated from this fraction by a monoclonal antibody immuno-separation procedure. Under conditions designed to preserve lipid-mediated membrane organization, several proteins were found in the prion protein-enriched membrane domains (i.e. the non-receptor tyrosine kinases Lyn and Fyn and the neuronal glycosylphosphatidylinositol-anchored protein Thy-1). The prion protein-rich membrane domains contained, as well, about 50% of the sphingolipids, cholesterol and phosphatidylcholine present in the sphingolipid-enriched membrane fraction. All main sphingolipids, including sphingomyelin, neutral glycosphingolipids and gangliosides, were similarly enriched in the prion protein-rich membrane domains. Thus, prion protein plasma membrane environment in differentiated neurons resulted to be a complex entity, whose integrity requires a network of lipid-mediated non-covalent interactions.  相似文献   
39.
BackgroundDevelopment of novel therapeutic drugs and regimens for cancer treatment has led to improvements in patient long-term survival. This success has, however, been accompanied by the increased occurrence of second primary cancers. Indeed, patients who received regional radiotherapy for Hodgkin’s Lymphoma (HL) or breast cancer may develop, many years later, a solid metachronous tumor in the irradiated field. Despite extensive epidemiological studies, little information is available on the genetic changes involved in the pathogenesis of these solid therapy-related neoplasms.MethodsUsing microsatellite markers located in 7 chromosomal regions frequently deleted in sporadic esophageal cancer, we investigated loss of heterozygosity (LOH) and microsatellite instability (MSI) in 46 paired (normal and tumor) samples. Twenty samples were of esophageal carcinoma developed in HL or breast cancer long-term survivors: 14 squamous cell carcinomas (ESCC) and 6 adenocarcinomas (EADC), while 26 samples, used as control, were of sporadic esophageal cancer (15 ESCC and 11 EADC).ResultsWe found that, though the overall LOH frequency at the studied chromosomal regions was similar among metachronous and sporadic tumors, the latter exhibited a statistically different higher LOH frequency at 17q21.31 (p = 0.018). By stratifying for tumor histotype we observed that LOH at 3p24.1, 5q11.2 and 9p21.3 were more frequent in ESCC than in EADC suggesting a different role of the genetic determinants located nearby these regions in the development of the two esophageal cancer histotypes.ConclusionsAltogether, our results strengthen the genetic diversity among ESCC and EADC whether they occurred spontaneously or after therapeutic treatments. The presence of histotype-specific alterations in esophageal carcinoma arisen in HL or breast cancer long-term survivors suggests that their transformation process, though the putative different etiological origin, may retrace sporadic ESCC and EADC carcinogenesis.  相似文献   
40.
Ecological communities including tropical rainforest are rapidly changing under various disturbances caused by increasing human activities. Recently in Cambodia, illegal logging and clear-felling for agriculture have been increasing. Here, we study the effects of logging, mortality and recruitment of plot trees on phylogenetic community structure in 32 plots in Kampong Thom, Cambodia. Each plot was 0.25 ha; 28 plots were established in primary evergreen forests and four were established in secondary dry deciduous forests. Measurements were made in 1998, 2000, 2004 and 2010, and logging, recruitment and mortality of each tree were recorded. We estimated phylogeny using rbcL and matK gene sequences and quantified phylogenetic α and β diversity. Within communities, logging decreased phylogenetic diversity, and increased overall phylogenetic clustering and terminal phylogenetic evenness. Between communities, logging increased phylogenetic similarity between evergreen and deciduous plots. On the other hand, recruitment had opposite effects both within and between communities. The observed patterns can be explained by environmental homogenization under logging. Logging is biased to particular species and larger diameter at breast height, and forest patrol has been effective in decreasing logging.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号