首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   341篇
  免费   25篇
  2023年   1篇
  2021年   5篇
  2020年   4篇
  2019年   4篇
  2018年   7篇
  2017年   12篇
  2016年   14篇
  2015年   21篇
  2014年   24篇
  2013年   33篇
  2012年   34篇
  2011年   24篇
  2010年   17篇
  2009年   16篇
  2008年   12篇
  2007年   16篇
  2006年   16篇
  2005年   24篇
  2004年   13篇
  2003年   17篇
  2002年   13篇
  2001年   5篇
  2000年   1篇
  1999年   6篇
  1998年   5篇
  1997年   5篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1984年   1篇
  1980年   2篇
  1979年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有366条查询结果,搜索用时 515 毫秒
91.
COS-1 cells bearing FcgammaRIIA were used as a model to demonstrate co-localization of several enzymes previously shown to regulate neutrophil phagocytosis. In COS-1 cells, phospholipase D (PLD) in the membrane fraction was activated during phagocytosis. PLD was found almost exclusively in lipid rafts, along with RhoA and ARF1. Protein kinase C-delta (PKCdelta) and Raf-1 translocated to lipid rafts. In neutrophils, ceramide levels increase during phagocytosis, indicating that FcgammaRIIA engagement initiates ceramide generation. Applying this model, we transfected COS-1 cells with FcgammaRIIA that had been mutated in the ITAM region, rendering them unable to ingest particles. When the mutant receptors were engaged, ceramide was generated and MAPK was activated normally, thus these processes did not require actual ingestion of particles. These results indicate that signaling proteins for phagocytosis are either constitutively present in, or are recruited to, lipid rafts where they are readily available to activate one another.  相似文献   
92.
93.
94.
95.
Cell migration requires extension of lamellipodia that are stabilized by formation of adhesive complexes at the leading edge. Both processes are regulated by signaling proteins recruited to nascent adhesive sites that lead to activation of Rho GTPases. The Ajuba/Zyxin family of LIM proteins are components of cellular adhesive complexes. We show that cells from Ajuba null mice are inhibited in their migration, without associated abnormality in adhesion to extracellular matrix proteins, cell spreading, or integrin activation. Lamellipodia production, or function, is defective and there is a selective reduction in the level and tyrosine phosphorylation of FAK, p130Cas, Crk, and Dock180 at nascent focal complexes. In response to migratory cues Rac activation is blunted in Ajuba null cells, as detected biochemically and by FRET analysis. Ajuba associates with the focal adhesion-targeting domain of p130Cas, and rescue experiments suggest that Ajuba acts upstream of p130Cas to localize p130Cas to nascent adhesive sites in migrating cells thereby leading to the activation of Rac.  相似文献   
96.
Malaria is a major health problem in many countries and according to an estimate of the WHO, more than 500 million infections occur per year. Artemisinin, a sesquiterpene from Artemisia annua L., has received considerable attention as a promising and potent antimalarial drug for its stage speciticity, its rather low toxicity, effectiveness against drug-resistant Plasmodium species and activity against cerebral malaria. From recent studies it seems that hemin is primarily involved in the antimalarial activity of the constituents of Artemisia annua L. Thus, the interaction of a compound with hemin may represent a crucial screening test to define its efficacy. In this study the interaction between artemisinin and hemin was investigated by UltraViolet/Visible (UV/Vis) spectrophotometry and High Performance Liquid Chromatography/Diode Array Detector/Mass Spectrometry (HPLC/DAD/MS). In addition, some flavonols isolated from Artemisia annua L. were also tested to investigate their possible role in the interaction between artemisinin and hemin. These two simple physico-chemical methods can be useful as rapid and widespread screening methods for the search of other alkylating antimalarial constituents from natural sources or for the evaluation of the activity of semisynthetic analogues of artemisinin.  相似文献   
97.
98.
99.
Studies have suggested chronic pain syndromes are associated with neural reorganization in specific regions associated with perception, processing, and integration of pain. Urological chronic pelvic pain syndrome (UCPPS) represents a collection of pain syndromes characterized by pelvic pain, namely Chronic Prostatitis/Chronic Pelvic Pain Syndrome (CP/CPPS) and Interstitial Cystitis/Painful Bladder Syndrome (IC/PBS), that are both poorly understood in their pathophysiology, and treated ineffectively. We hypothesized patients with UCPPS may have microstructural differences in the brain compared with healthy control subjects (HCs), as well as patients with irritable bowel syndrome (IBS), a common gastrointestinal pain disorder. In the current study we performed population-based voxel-wise DTI and super-resolution track density imaging (TDI) in a large, two-center sample of phenotyped patients from the multicenter cohort with UCPPS (N = 45), IBS (N = 39), and HCs (N = 56) as part of the MAPP Research Network. Compared with HCs, UCPPS patients had lower fractional anisotropy (FA), lower generalized anisotropy (GA), lower track density, and higher mean diffusivity (MD) in brain regions commonly associated with perception and integration of pain information. Results also showed significant differences in specific anatomical regions in UCPPS patients when compared with IBS patients, consistent with microstructural alterations specific to UCPPS. While IBS patients showed clear sex related differences in FA, MD, GA, and track density consistent with previous reports, few such differences were observed in UCPPS patients. Heat maps illustrating the correlation between specific regions of interest and various pain and urinary symptom scores showed clustering of significant associations along the cortico-basal ganglia-thalamic-cortical loop associated with pain integration, modulation, and perception. Together, results suggest patients with UCPPS have extensive microstructural differences within the brain, many specific to syndrome UCPPS versus IBS, that appear to be localized to regions associated with perception and integration of sensory information and pain modulation, and seem to be a consequence of longstanding pain.  相似文献   
100.

Background

The simultaneous occurrence of metabolic syndrome and excessive daytime sleepiness are very common in obstructive sleep apnea (OSA) patients. Both conditions, if present in OSA, have been reported to be associated with inflammation and disruption of oxidative stress balance that impair the cardiovascular system. To verify the impact of daytime sleepiness on inflammatory and oxidative stress markers, we evaluated OSA patients without significant metabolic disturbance.

Methods

Thirty-five male subjects without diagnostic criteria for metabolic syndrome (Adult Treatment Panel III) were distributed into a control group (n = 10) (43 ± 10.56 years, apnea-hypopnea index - AHI 2.71 ± 1.48/hour), a non-sleepy OSA group (n = 11) (42.36 ± 9.48 years, AHI 29.48 ± 22.83/hour) and a sleepy OSA group (n = 14) (45.43 ± 10.06 years, AHI 38.20 ± 25.54/hour). Excessive daytime sleepiness was considered when Epworth sleepiness scale score was ≥ 10. Levels of high-sensitivity C-reactive protein, homocysteine and cysteine, and paraoxonase-1 activity and arylesterase activity of paraoxonase-1 were evaluated.

Results

Patients with OSA and excessive daytime sleepiness presented increased high-sensitivity C-reactive protein levels even after controlling for confounders. No significant differences were found among the groups in paraoxonase-1 activity nor arylesterase activity of paraoxonase-1. AHI was independently associated and excessive daytime sleepiness tended to have an association with high-sensitivity C-reactive protein.

Conclusions

In the absence of metabolic syndrome, increased inflammatory response was associated with AHI and daytime sleepiness, while OSA was not associated with abnormalities in oxidative stress markers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号