首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   341篇
  免费   25篇
  2023年   1篇
  2021年   5篇
  2020年   4篇
  2019年   4篇
  2018年   7篇
  2017年   12篇
  2016年   14篇
  2015年   21篇
  2014年   24篇
  2013年   33篇
  2012年   34篇
  2011年   24篇
  2010年   17篇
  2009年   16篇
  2008年   12篇
  2007年   16篇
  2006年   16篇
  2005年   24篇
  2004年   13篇
  2003年   17篇
  2002年   13篇
  2001年   5篇
  2000年   1篇
  1999年   6篇
  1998年   5篇
  1997年   5篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1984年   1篇
  1980年   2篇
  1979年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有366条查询结果,搜索用时 265 毫秒
41.
Mutations in the human X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been identified in patients with Rett syndrome (RTT), West syndrome, and X-linked infantile spasms, sharing the common feature of mental retardation and early seizures. CDKL5 is a rather uncharacterized kinase, but its involvement in RTT seems to be explained by the fact that it works upstream of MeCP2, the main cause of Rett syndrome. To understand the role of this kinase for nervous system functions and to address if molecular mechanisms are involved in regulating its distribution and activity, we studied the ontogeny of CDKL5 expression in developing mouse brains by immunostaining and Western blotting. The expression profile of CDKL5 was compared with that of MeCP2. The two proteins share a general expression profile in the adult mouse brain, but CDKL5 levels appear to be highly modulated at the regional level. Its expression is strongly induced in early postnatal stages, and in the adult brain CDKL5 is present in mature neurons, but not in astroglia. Interestingly, the presence of CDKL5 in the cell nucleus varies at the regional level of the adult brain and is developmentally regulated. CDKL5 shuttles between the cytoplasm and the nucleus and the C-terminal tail is involved in localizing the protein to the cytoplasm in a mechanism depending on active nuclear export. Accordingly, Rett derivatives containing disease-causing truncations of the C terminus are constitutively nuclear, suggesting that they might act as gain of function mutations in this cellular compartment.  相似文献   
42.
A growth medium based on starch and fish flour, optimal for the inducible synthesis of elastase by strain Streptomyces sp. 82 was composed using a factorial experiment. Elastase yield was raised 7.5 times compared to the basic medium.  相似文献   
43.
A method for revealing nickel deposits from nichrome microelectrodes in the mammalian central nervous system is described. These deposits are stained red by dimethylglyoxime and can be observed directly or in Nissl stained sections. This method allows one to identify the exact position of a nichrome electrode in a microelectrode bundle chronically implanted in the brain.  相似文献   
44.
45.
46.
While the static magnitude of thermal pain perception has been shown to follow a power-law function of the temperature, its dynamical features have been largely overlooked. Due to the slow temporal experience of pain, multiple studies now show that the time evolution of its magnitude can be captured with continuous online ratings. Here we use such ratings to model quantitatively the temporal dynamics of thermal pain perception. We show that a differential equation captures the details of the temporal evolution in pain ratings in individual subjects for different stimulus pattern complexities, and also demonstrates strong predictive power to infer pain ratings, including readouts based only on brain functional images.  相似文献   
47.
48.
The vesicular acetylcholine (ACh) transporter (VAChT) mediates ACh storage by synaptic vesicles. However, the VAChT-independent release of ACh is believed to be important during development. Here we generated VAChT knockout mice and tested the physiological relevance of the VAChT-independent release of ACh. Homozygous VAChT knockout mice died shortly after birth, indicating that VAChT-mediated storage of ACh is essential for life. Indeed, synaptosomes obtained from brains of homozygous knockouts were incapable of releasing ACh in response to depolarization. Surprisingly, electrophysiological recordings at the skeletal-neuromuscular junction show that VAChT knockout mice present spontaneous miniature end-plate potentials with reduced amplitude and frequency, which are likely the result of a passive transport of ACh into synaptic vesicles. Interestingly, VAChT knockouts exhibit substantial increases in amounts of choline acetyltransferase, high-affinity choline transporter, and ACh. However, the development of the neuromuscular junction in these mice is severely affected. Mutant VAChT mice show increases in motoneuron and nerve terminal numbers. End plates are large, nerves exhibit abnormal sprouting, and muscle is necrotic. The abnormalities are similar to those of mice that cannot synthesize ACh due to a lack of choline acetyltransferase. Our results indicate that VAChT is essential to the normal development of motor neurons and the release of ACh.Cholinergic neurotransmission has key functions in life, as it regulates several central and peripheral nervous system outputs. Acetylcholine (ACh) is synthesized in the cytoplasm by the enzyme choline acetyltransferase (ChAT) (16). Choline supplied by the high-affinity choline transporter (CHT1) is required to maintain ACh synthesis (52). A lack of ChAT (4, 35) or the high-affinity choline transporter (21) in genetically modified mice is incompatible with life. ACh plays an important role in wiring the neuromuscular junction (NMJ) during development (38, 43). Embryonic synthesis of ACh is fundamental for the development of proper nerve-muscle patterning at the mammalian NMJ, as ChAT-null mice present aberrant nicotinic ACh receptor (nAChR) localization and increased motoneuron (MN) survival, axonal sprouting, and branching (4, 35).The vesicular ACh transporter (VAChT) exchanges cytoplasmic ACh for two vesicular protons (37, 41). Previously reported electrophysiological studies showed that quantal size is decreased by vesamicol, an inhibitor of VAChT, but only in nerve terminals that have been electrically stimulated (19, 59, 60, 63). VAChT overexpression in developing Xenopus MNs increases both the size and frequency of miniature-end-plate currents (54). In Caenorhabditis elegans, mutations in VAChT affect behavior (65). Moreover, a decrease in VAChT expression has functional consequences for mammals, as mutant mice with a 70% reduction in the expression levels of this transporter (VAChT knockdown [KDHOM] mice) are myasthenic and have cognitive deficits (47). Hence, vesicular transport activity is rate limiting for neurotransmission “in vivo” (18, 47).Exocytosis of synaptic vesicle contents is the predominant mechanism for the regulated secretion of neurotransmitters (55). However, alternative mechanisms of secretion have been proposed (20, 56, 61). Quantal ACh release, comparable to that seen in developing nerve terminals, has been detected in myocytes and fibroblasts in culture, which presumably do not express VAChT (14, 24). More recently, it was found that the correct targeting of Drosophila photoreceptor axons is disrupted in flies with null mutations in ChAT (64). Remarkably, the inactivation of VAChT did not produce the same result (64). The result suggests that the release of ACh during development is not dependent on VAChT, perhaps because it is nonvesicular or because vesicular storage can occur without VAChT.To test if the VAChT-independent secretion of ACh has any physiological role in the mammalian nervous system, we generated a mouse line in which the VAChT gene is deleted. These mice lack the stimulated release of ACh from synaptosomes, die after birth, and show several alterations in neuromuscular wiring consistent with a severe decrease in the cholinergic input to muscles during development. These experiments indicate that VAChT has an important role in maintaining activity-dependent ACh release that supports life and the correct patterning of innervation at the NMJ.  相似文献   
49.
This study aimed to determine whether patients with aseptic and bacterial meningitis presented alterations in oxidative stress parameters of cerebrospinal fluid (CSF). A total of 30 patients were used in the research. The CSF oxidative stress status has been evaluated through many parameters, such as lipid peroxidation through thiobarbituric acid reactive substances (TBARS) and antioxidant defense systems such as superoxide dismutase (SOD), glutathione S-transferase (GST), reduced glutathione (GSH) and ascorbic acid. TBARS levels, SOD and GST activity increase in aseptic meningitis and in bacterial meningitis. The ascorbic acid concentration increased significantly in patients with both meningitis types. The reduced glutathione levels were reduced in CSF of patients with aseptic and bacterial meningitis. In present study we may conclude that oxidative stress contributes at least in part to the severe neurological dysfunction found in meningitis.  相似文献   
50.
Considering the extraordinary microbial diversity and importance of fungi as enzyme producers, the search for new biocatalysts with special characteristics and possible applications in biocatalysis is of great interest. Here, we report the performance in the resolution of racemic ibuprofen of a native enantioselective lipase from Aspergillus niger, free and immobilized in five types of support (Accurel EP-100, Amberlite MB-1, Celite, Montmorillonite K10 and Silica gel). Amberlite MB-1 was found to be the best support, with a conversion of 38.2%, enantiomeric excess of 50.7% and enantiomeric ratio (E value) of 19 in 72 h of reaction. After a thorough optimization of several parameters, the E value of the immobilized Aspergillus niger lipase was increased (E = 23) in a shorter reaction period (48 h) at 35°C. Moreover, the immobilized Aspergillus niger lipase maintained an esterification activity of at least 80% after 8 months of storage at 4°C and could be reused at least six times.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号