首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   197篇
  免费   13篇
  2022年   1篇
  2021年   5篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   5篇
  2016年   4篇
  2015年   9篇
  2014年   14篇
  2013年   12篇
  2012年   15篇
  2011年   11篇
  2010年   14篇
  2009年   11篇
  2008年   12篇
  2007年   10篇
  2006年   11篇
  2005年   14篇
  2004年   8篇
  2003年   5篇
  2002年   8篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1984年   6篇
  1979年   1篇
排序方式: 共有210条查询结果,搜索用时 140 毫秒
101.
102.
The proteins belonging to SWI2/SNF2 family of DNA dependent ATPases are important members of the chromatin remodeling complexes that are implicated in epigenetic control of gene expression. We have identified a human gene with a putative DNA binding domain, which belongs to the INO80 subfamily of SWI2/SNF2 proteins. Here we report the cloning, expression, and functional activity of the domains from hINO80 gene both in terms of the DNA dependent ATPase as well as DNA binding activity. A differential expression of the various domains within this gene is detected in human tissues while a ubiquitous expression is detected in mice. The intranuclear localization is demonstrated using antibodies directed against the DBINO domain of hINO80.  相似文献   
103.
Space travel induces many deleterious effects on the flight crew due to the '0' g environment. The brain experiences a tremendous fluid shift, which is responsible for many of the detrimental changes in physical behavior seen in astronauts. It therefore indicates that the brain may undergo major changes in its protein levels in a '0' g environment to counteract the stress. Analysis of these global changes in proteins may explain to better understand the functioning of brain in a '0' g condition. Toward such an effort, we have screened proteins in the hippocampus of mice kept in simulated microgravity environment for 7 days and have observed a few changes in major proteins as compared to control mice. Essentially, the results show a major loss of proteins in the hippocampus of mice subjected to simulated microgravity. These changes occur in structural proteins such as tubulin, coupled with the loss of proteins involved in metabolism. This preliminary investigation leads to an understanding of the alteration of proteins in the hippocampus in response to the microgravity environment.  相似文献   
104.
Purified histone H1 exerts extracellular functions suggesting novel histone functions. The cytotoxic effects of histone H1 have lead to its choice as a pharmacological tool in breast cancer. Hence the present study was aimed at investigating the effect of exogenous histone H1 on the proliferation of estrogen receptor positive (MCF 7) and estrogen receptor negative (MDA MB 231) human breast cancer cells. Cells were incubated with various concentrations of histone H1 and antiproliferative activity was assessed by MTT assay. Proliferation of breast cancer cells was assessed from the activity of ornithine decarboxylase (ODC) using [(14)C] labeled ornithine. Histone H1-mediated cellular effects, such as anchorage dependent growth and apoptosis, were assessed by colony formation assay, fluorescence microscopy after acridine orange/propidium iodide staining and DNA fragmentation analysis. Histone H1 was significantly cytotoxic as it inhibited colony formation, ODC activity and induced apoptosis in both estrogen receptor positive and estrogen receptor negative cells. These results suggest that histone H1-induced antiproliferative effects on human breast cancer cells could possibly involve inhibition of ODC.  相似文献   
105.
The role of secretory proteins of Mycobacterium tuberculosis in pathogenesis and stimulation of specific host responses is well documented. They are also shown to activate different cell types, which subsequently present mycobacterial antigens to T cells. Therefore identification of T cell epitopes from this set of proteins may serve to define candidate antigens with vaccine potential. Fifty-two secretory proteins of M. tuberculosis H37Rv were analyzed computationally for the presence of HLA class I binding nonameric peptides. All possible overlapping nonameric peptide sequences from 52 secretory proteins were generated in silico and analyzed for their ability to bind to 33 alleles belonging to A, B and C loci of HLA class I. Fifteen percent of generated peptides are predicted to bind to HLA with halftime of dissociation T(1/2) >or=100 min and 73% of the peptides predicted to bind are mono-allelic in their binding. The structural basis for recognition of no-namers by different HLA molecules was studied employing structural modeling of HLA class I-peptide complexes and there exists a good correlation between structural analysis and binding prediction. Pathogen peptides that could behave as self- or partially self-peptides in the host were eliminated using a comparative study with the human proteome, thus reducing the number of peptides for analysis. The implications of the finding for vaccine development are discussed vis-à-vis the limitations of the use of subunit vaccine and DNA vaccine.  相似文献   
106.
107.

Background

Recent research on glioblastoma (GBM) has focused on deducing gene signatures predicting prognosis. The present study evaluated the mRNA expression of selected genes and correlated with outcome to arrive at a prognostic gene signature.

Methods

Patients with GBM (n = 123) were prospectively recruited, treated with a uniform protocol and followed up. Expression of 175 genes in GBM tissue was determined using qRT-PCR. A supervised principal component analysis followed by derivation of gene signature was performed. Independent validation of the signature was done using TCGA data. Gene Ontology and KEGG pathway analysis was carried out among patients from TCGA cohort.

Results

A 14 gene signature was identified that predicted outcome in GBM. A weighted gene (WG) score was found to be an independent predictor of survival in multivariate analysis in the present cohort (HR = 2.507; B = 0.919; p<0.001) and in TCGA cohort. Risk stratification by standardized WG score classified patients into low and high risk predicting survival both in our cohort (p = <0.001) and TCGA cohort (p = 0.001). Pathway analysis using the most differentially regulated genes (n = 76) between the low and high risk groups revealed association of activated inflammatory/immune response pathways and mesenchymal subtype in the high risk group.

Conclusion

We have identified a 14 gene expression signature that can predict survival in GBM patients. A network analysis revealed activation of inflammatory response pathway specifically in high risk group. These findings may have implications in understanding of gliomagenesis, development of targeted therapies and selection of high risk cancer patients for alternate adjuvant therapies.  相似文献   
108.
109.
Infective endocarditis (IE) has emerged as a public health problem due to changes in the etiologic spectrum and due to involvement of resistant bacterial strains with increased virulence. Developing potent vaccine is an important strategy to tackle IE. Complete genome sequences of eight selected pathogens of IE paved the way to design common T-cell driven subunit vaccines. Comparative genomics and subtractive genomic analysis were applied to identify adinosine tri phosphate (ATP)-binding cassette (ABC) transporter ATP-binding protein from Streptococcus mitis (reference organism) as common vaccine target. Reverse vaccinology technique was implemented using computational tools such as ProPred, SYFPEITHI, and Immune epitope database. Twenty-one T-cell epitopes were predicted from ABC transporter ATP-binding protein. Multiple sequence alignment of ABC transporter ATP-binding protein from eight selected IE pathogens was performed to identify six conserved T-cell epitopes. The six selected T-cell epitopes were further evaluated at structure level for HLA-DRB binding through homology modeling and molecular docking analysis using Maestro v9.2. The proposed six T-cell epitopes showed better binding affinity with the selected HLA-DRB alleles. Subsequently, the docking complexes of T-cell epitope and HLA-DRBs were ranked based on XP Gscore. The T-cell epitope (208-LNYITPDVV-216)–HLA-DRB1?0101 (1T5?W) complex having the best XP Gscore (?13.25?kcal/mol) was assessed for conformational stability and interaction stability through molecular dynamic simulation for 10?ns using Desmond v3.2. The simulation results revealed that the HLA-DRB–epitope complex was stable throughout the simulation time. Thus, the epitope would be ideal candidate for T-cell driven subunit vaccine design against infective endocarditis.  相似文献   
110.
Streptococcus pneumoniae (pneumococcus) remains an important cause of meningitis, bacteremia, acute otitis media, community acquired pneumonia associated with significant morbidity, and mortality world wide. Conjugated polysaccharide, glycoconjugated, and capsular polysaccharide based vaccines were existent for pneumococcal disease but are still specific and restricted to serotypes of S. pneumoniae. Proteome of eight serotypes of S. pneumoniae was retrieved and identified in common proteins (Munikumar et al., 2012). 18 membrane proteins were distinguished from 1657 common proteins of eight serotypes of S. pneumoniae. Implementing comparative genomic approach and subtractive genomic approach, three membrane proteins were predicted as essential for bacterial survival and non-homologous to human (Munikumar et al., 2012; Umamaheswari et al., 2011). ProPred server was used to propose four promiscuous T-cell epitopes from three membrane proteins and validated through published positive control, SYFPEITHI and immune epitope database (Munikumar et al., in press). The four epitopes docked into peptide binding region of predominant HLA-DRB alleles with good binding affinity in Maestro v9.2. The T-cell epitope 89-VVYLLPILI-97 and HLA-DRB5?0101 docking complex was with best XPG score (?13.143?kcal/mol). Further, the stability of the complex was checked through molecular dynamics simulations in Desmond v3.3. The simulation results had revealed that the complex was stable throughout 5000?ps (Munikumar et al., in press). Thus, the epitope would be the ideal candidate for T-cell driven subunit vaccine design against selected serotypes of S. pneumoniae.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号