首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   269篇
  免费   19篇
  国内免费   4篇
  2022年   2篇
  2021年   5篇
  2020年   2篇
  2019年   1篇
  2018年   6篇
  2017年   6篇
  2016年   10篇
  2015年   17篇
  2014年   25篇
  2013年   15篇
  2012年   18篇
  2011年   14篇
  2010年   18篇
  2009年   16篇
  2008年   14篇
  2007年   10篇
  2006年   13篇
  2005年   18篇
  2004年   11篇
  2003年   5篇
  2002年   9篇
  2001年   4篇
  2000年   3篇
  1999年   4篇
  1998年   8篇
  1997年   1篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1993年   4篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1989年   3篇
  1988年   1篇
  1985年   1篇
  1984年   4篇
  1983年   4篇
  1979年   1篇
  1978年   2篇
  1973年   1篇
排序方式: 共有292条查询结果,搜索用时 31 毫秒
151.
Infective endocarditis (IE) has emerged as a public health problem due to changes in the etiologic spectrum and due to involvement of resistant bacterial strains with increased virulence. Developing potent vaccine is an important strategy to tackle IE. Complete genome sequences of eight selected pathogens of IE paved the way to design common T-cell driven subunit vaccines. Comparative genomics and subtractive genomic analysis were applied to identify adinosine tri phosphate (ATP)-binding cassette (ABC) transporter ATP-binding protein from Streptococcus mitis (reference organism) as common vaccine target. Reverse vaccinology technique was implemented using computational tools such as ProPred, SYFPEITHI, and Immune epitope database. Twenty-one T-cell epitopes were predicted from ABC transporter ATP-binding protein. Multiple sequence alignment of ABC transporter ATP-binding protein from eight selected IE pathogens was performed to identify six conserved T-cell epitopes. The six selected T-cell epitopes were further evaluated at structure level for HLA-DRB binding through homology modeling and molecular docking analysis using Maestro v9.2. The proposed six T-cell epitopes showed better binding affinity with the selected HLA-DRB alleles. Subsequently, the docking complexes of T-cell epitope and HLA-DRBs were ranked based on XP Gscore. The T-cell epitope (208-LNYITPDVV-216)–HLA-DRB1?0101 (1T5?W) complex having the best XP Gscore (?13.25?kcal/mol) was assessed for conformational stability and interaction stability through molecular dynamic simulation for 10?ns using Desmond v3.2. The simulation results revealed that the HLA-DRB–epitope complex was stable throughout the simulation time. Thus, the epitope would be ideal candidate for T-cell driven subunit vaccine design against infective endocarditis.  相似文献   
152.
Streptococcus pneumoniae (pneumococcus) remains an important cause of meningitis, bacteremia, acute otitis media, community acquired pneumonia associated with significant morbidity, and mortality world wide. Conjugated polysaccharide, glycoconjugated, and capsular polysaccharide based vaccines were existent for pneumococcal disease but are still specific and restricted to serotypes of S. pneumoniae. Proteome of eight serotypes of S. pneumoniae was retrieved and identified in common proteins (Munikumar et al., 2012). 18 membrane proteins were distinguished from 1657 common proteins of eight serotypes of S. pneumoniae. Implementing comparative genomic approach and subtractive genomic approach, three membrane proteins were predicted as essential for bacterial survival and non-homologous to human (Munikumar et al., 2012; Umamaheswari et al., 2011). ProPred server was used to propose four promiscuous T-cell epitopes from three membrane proteins and validated through published positive control, SYFPEITHI and immune epitope database (Munikumar et al., in press). The four epitopes docked into peptide binding region of predominant HLA-DRB alleles with good binding affinity in Maestro v9.2. The T-cell epitope 89-VVYLLPILI-97 and HLA-DRB5?0101 docking complex was with best XPG score (?13.143?kcal/mol). Further, the stability of the complex was checked through molecular dynamics simulations in Desmond v3.3. The simulation results had revealed that the complex was stable throughout 5000?ps (Munikumar et al., in press). Thus, the epitope would be the ideal candidate for T-cell driven subunit vaccine design against selected serotypes of S. pneumoniae.  相似文献   
153.
Leptospira interrogans is the foremost cause of human leptospirosis. Discovery of novel lead molecules for common drug targets of more than 250 Leptospira serovars is of significant research interest. Lipopolysaccharide (LPS) layer prevent entry of hydrophobic agents into the cell and protect structural integrity of the bacterium. KDO-8-phosphate synthase (KdsA) catalyzes the first step of KDO biosynthesis that leads to formation of inner core of LPS. KdsA was identified as a potential drug target against Leptospira interrogans through subtractive genomic approach, metabolic pathway analysis, and comparative analysis (Amineni et al., 2010). The present study rationalizes a systematic implementation of homology modeling, docking, and molecular dynamics simulations to discover potent KdsA inhibitors (Pradhan et al., 2013; Umamaheswari et al., 2010). A reliable tertiary structure of KdsA in complex with substrate PEP was constructed based on co-crystal structure of Aquifex aeolicus KdsA synthase with PEP using Modeller9v10. Geometry-based analog search for PEP was performed from LigandInfo database to generate an in house library of 352 ligands. The ligand data-set was docked into KdsA active site through three-stage docking technique (HTVS, SP, and XP) using Glidev5.7. Thirteen lead molecules were found to have better binding affinity compared to PEP (XP Gscore?=??7.38?kcal/mol; Figure 1). The best lead molecule (KdsA- lead1 docking complex) showed XP Gscore of ?10.26?kcal/mol and the binding interactions (Figure 2) were correlated favorably with PEP–KdsA interactions (Figure 1). Molecular dynamics simulations of KdsA– lead1 docking complex for 10?ns had revealed that the complex (Figure 3) remained stable in closer to physiological environmental condition. The predicted pharmacological properties of lead1 were well within the range of a drug molecule with good ADME profile, hence, would be intriguing towards development of potent inhibitor molecule against KdsA of Leptospira.  相似文献   
154.
With the widespread application of carbon nanotubes (CNTs) in diverse commercial processes, scientists are now concerned about the potential health risk of occupational exposures. In this study, CNT-induced pulmonary toxicity was investigated by exposing BALB/c mice to aerosolized single-wall (SW) CNT and multiwall (MW) CNT (5 μg/g of mice) for 7 consecutive days in a nose-only exposure system. Microscopic studies showed that inhaled CNTs were homogeneously distributed in the mouse lung. The total number of bronchoalveolar lavage polymorphonuclear leukocytes recovered from the mice exposed to SWCNT and MWCNT (1.2 × 10(6) ± 0.52 and 9.87 × 10(5) ± 1.45; respectively) was significantly greater than control mice (5.46 × 10(5) ± 0.78). Rapid development of pulmonary fibrosis in mice that inhaled CNT was also confirmed by significant increases in the collagen level. The lactate dehydrogenase levels were increased nearly 2- and 2.4-fold in mice that inhaled SWCNT and MWCNT, respectively, as compared with control mice. In addition, exposure of CNTs to mice showed a significant (p < 0.05) reduction of antioxidants (glutathione, superoxide dismutase, and catalase) and induction of oxidants (myloperoxidase, oxidative stress, and lipid peroxidation) compared with control. Apoptosis-related proteins such as caspase-3 and -8 activities were also significantly increased in mice that inhaled CNT than in control mice. Together, this study shows that inhaled CNTs induce inflammation, fibrosis, alteration of oxidant and antioxidant levels, and induction of apoptosis-related proteins in the lung tissues to trigger cell death.  相似文献   
155.
为实现田间土壤棉花黄萎病菌的早期检测,建立了土壤中棉花黄萎病菌的SYBR GreenⅠ荧光定量PCR检测方法.以含342bp PCR扩增产物的阳性质粒为参考,构建了标准曲线,并对该曲线的特异性、敏感性、可重复性进行了评价.结果表明,该方法具有快速、特异性强、敏感度高等特点.检测范围在3.8×103-3.8×108cop...  相似文献   
156.

Background

Previous studies investigating the role of cytokines in the pathogenesis of leprosy have either been on only small numbers of patients or have not combined clinical and histological data. The INFIR Cohort study is a prospective study of 303 new multibacillary leprosy patients to identify risk factors for reaction and nerve damage. This study characterised the cellular infiltrate in skin and nerve biopsies using light microscopic and immunohistochemical techniques to identify any association of cytokine markers, nerve and cell markers with leprosy reactions.

Methodology/Principal Findings

TNF-α, TGF-β and iNOS protein in skin and nerve biopsies were detected using monoclonal antibody detection immunohistochemistry techniques in 299 skin biopsies and 68 nerve biopsies taken from patients at recruitment. The tissues were stained with hematoxylin and eosin, modified Fite Faraco, CD68 macrophage cell marker and S100.

Conclusions/Significance

Histological analysis of the biopsies showed that 43% had borderline tuberculoid (BT) leprosy, 27% borderline lepromatous leprosy, 9% lepromatous leprosy, 13% indeterminate leprosy types and 7% had no inflammation. Forty-six percent had histological evidence of a Type 1 Reaction (T1R) and 10% of Erythema Nodosum Leprosum. TNF-α was detected in 78% of skin biopsies (181/232), iNOS in 78% and TGF-β in 94%. All three molecules were detected at higher levels in patients with BT leprosy. TNF-α was localised within macrophages and epithelioid cells in the granuloma, in the epidermis and in dermal nerves in a few cases. TNF-α, iNOS and TGF-β were all significantly associated with T1R (p<0.001). Sixty-eight nerve biopsies were analysed. CD68, TNF-α and iNOS staining were detectable in 88%, 38% and 28% of the biopsies respectively. The three cytokines TNF-α, iNOS and TGF-β detected by immunohistochemistry showed a significant association with the presence of skin reaction. This study is the first to demonstrate an association of iNOS and TGF-β with T1R.  相似文献   
157.
Visualization and analysis of molecular networks are both central to systems biology. However, there still exists a large technological gap between them, especially when assessing multiple network levels or hierarchies. Here we present RedeR, an R/Bioconductor package combined with a Java core engine for representing modular networks. The functionality of RedeR is demonstrated in two different scenarios: hierarchical and modular organization in gene co-expression networks and nested structures in time-course gene expression subnetworks. Our results demonstrate RedeR as a new framework to deal with the multiple network levels that are inherent to complex biological systems. RedeR is available from http://bioconductor.org/packages/release/bioc/html/RedeR.html.  相似文献   
158.

Background

Tumour necrosis factor alpha is a multifunctional proinflammatory cytokine involved in the pathogenesis of metabolic syndrome, insulin resistance, and obesity. Aim of this study is to investigate in a North Indian female population the impact of the G-308A TNF-α variant on various components of the metabolic syndrome, Insulin Resistance, serum TNF-α and Leptin levels.

Methods

The G-308A TNF-α polymorphism has been studied in 269 females with metabolic syndrome (NCEP ATP III criteria) (age 31.91 ± 6.05) and 272 healthy females without metabolic syndrome (age 30.96 ± 7.01). The G-308A variant was detected by PCR amplification and Nco-1 digestion.

Results

Homozygous mutant genotype (AA) (p = <0.001: OR = 3.24: 95% CI = 2.15-4.89) and mutant allele (A) (p = <0.001: OR = 3.04: 95% CI = 2.08-4.43) of TNF-α was significantly less frequently observed in the control population as compared to study group. Furthermore, on dividing the subjects into two groups according to the absence (TNF-1 allele) or presence of the mutant A (TNF-2) allele, significant results were obtained in most of the metabolic risk factors.

Conclusions

Our results suggest that the G-308A polymorphism of the TNF-α gene may be independently associated with hypertension, leptin level and hypercholesterolemia leading to metabolic syndrome independent of Insulin resistance and hyperglycemia.  相似文献   
159.
160.
Reactive oxygen species (ROS) contribute significantly to apoptosis in renal ischemia-reperfusion (IR) injury, however the exact mechanisms are not well understood. We used novel lentiviral vectors to over-express superoxide dismutase 1 (SOD1) in proximal tubular epithelial (LLC-PK1) cells and determined effects of SOD1 following ATP depletion-recovery, used as a model to simulate renal IR. SOD1 over-expression partially protected against cytotoxicity (P < 0.001) and decreased superoxide (O2 •−) in ATP depleted cells. The ATP depletion-mediated increase in nuclear fragmentation, an index of apoptosis and activation of caspase-3 was also partially blocked by SOD1 (P < 0.05). However, SOD1 over-expression was insufficient to completely attenuate caspase-3, indicating that ROS other than cytoplasmic O2 •− are involved in ATP depletion mediated injury. To test the contribution of hydrogen peroxide, a subset of enhanced green fluorescent protein (EGFP) and SOD1 (serum free and injured) cells were treated with polyethylene glycol-catalase (PEG-catalase). As expected there was 50% reduction in cytotoxicity and caspase-3 in SOD1 cells compared to EGFP cells; catalase treatment decreased both indices by an additional 28% following ATP depletion. To test the role of mitochondrial derived superoxide, we also treated a subset of LLC-PK1 cells with the mitochondrial antioxidant, MitoTEMPO. Treatment with MitoTEMPO also decreased ATP depletion induced cytotoxicity in LLC-PK1 cells in a dose dependant manner. These studies indicate that both SOD1 dependent and independent pathways are integral in protection against ATP depletion-recovery mediated cytotoxicity and apoptosis, however more studies are needed to delineate the signaling mechanisms involved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号