首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2015篇
  免费   178篇
  国内免费   2篇
  2195篇
  2023年   14篇
  2022年   28篇
  2021年   58篇
  2020年   25篇
  2019年   29篇
  2018年   47篇
  2017年   32篇
  2016年   70篇
  2015年   107篇
  2014年   95篇
  2013年   126篇
  2012年   181篇
  2011年   166篇
  2010年   113篇
  2009年   85篇
  2008年   126篇
  2007年   130篇
  2006年   133篇
  2005年   97篇
  2004年   99篇
  2003年   86篇
  2002年   80篇
  2001年   24篇
  2000年   22篇
  1999年   22篇
  1998年   19篇
  1997年   6篇
  1996年   11篇
  1995年   9篇
  1994年   15篇
  1993年   11篇
  1992年   11篇
  1991年   9篇
  1990年   14篇
  1989年   9篇
  1988年   9篇
  1987年   6篇
  1986年   5篇
  1985年   6篇
  1984年   3篇
  1983年   6篇
  1982年   4篇
  1980年   3篇
  1979年   3篇
  1978年   11篇
  1975年   5篇
  1974年   3篇
  1973年   3篇
  1967年   3篇
  1966年   2篇
排序方式: 共有2195条查询结果,搜索用时 11 毫秒
941.
942.

Background  

During the last ten years, major advances have been made in characterizing and understanding the evolution of mitochondrial DNA, the most popular marker of molecular biodiversity. Several important results were recently reported using mammals as model organisms, including (i) the absence of relationship between mitochondrial DNA diversity and life-history or ecological variables, (ii) the absence of prominent adaptive selection, contrary to what was found in invertebrates, and (iii) the unexpectedly large variation in neutral substitution rate among lineages, revealing a possible link with species maximal longevity. We propose to challenge these results thanks to the bird/mammal comparison. Direct estimates of population size are available in birds, and this group presents striking life-history trait differences with mammals (higher mass-specific metabolic rate and longevity). These properties make birds the ideal model to directly test for population size effects, and to discriminate between competing hypotheses about the causes of substitution rate variation.  相似文献   
943.
944.
945.
We previously reported that integrin α8β1 is expressed in human intestinal epithelial crypt cells (HIECs) and represents one of the major RGD-binding integrins expressed by these cells. Moreover, the depletion of α8β1 affects vinculin, but not paxillin, localization at focal adhesion points. In the present study, we show that the integrin α8 shRNA-mediated knockdown in HIECs leads to a decrease in anoikis susceptibility under cell suspension culture conditions, marked by a reduction in PARP cleavage and propidium iodide incorporation. Moreover, α8β1-depleted HIECs exhibited an illicitly sustained activation of Fak and PI3-K/Akt-1 under anoikis conditions, rendering them refractory to anoikis. To this effect, colon cancer cells exhibiting resistance to anoikis not only displayed a loss of α8β1 expression, but forced expression of α8β1 in these cells decreased their resistance to anoikis. Consequently, α8β1 is a prerequisite for the proper conduct of anoikis in normal HIECs, whereas its loss contributes to the illicit acquisition of anoikis resistance.  相似文献   
946.
947.
Synthetic gene delivery systems represent an attractive alternative to viral vectors for DNA transfection. Cationic lipids are one of the most widely used non-viral vectors for the delivery of DNA into cultured cells and are easily synthesized, leading to a large variety of well-characterized molecules. This review discusses strategies for the design of efficient cationic lipids that overcome the critical barriers of in vitro transfection. A particular focus is placed on natural hydrophilic headgroups and lipophilic tails that have been used to synthesize biocompatible and non-toxic cationic lipids. We also present chemical features that have been investigated to enhance the transfection efficiency of cationic lipids by promoting the escape of lipoplexes from the endosomal compartment and DNA release from DNA-liposome complexes. Transfection efficiency studies using these strategies are likely to improve the understanding of the mechanism of cationic lipid-mediated gene delivery and to help the rational design of novel cationic lipids.  相似文献   
948.
Control of biofilms requires rapid methods to identify compounds effective against them and to isolate resistance-compromised mutants for identifying genes involved in enhanced biofilm resistance. While rapid screening methods for microtiter plate well (“static”) biofilms are available, there are no methods for such screening of continuous flow biofilms (“flow biofilms”). Since the latter biofilms more closely approximate natural biofilms, development of a high-throughput (HTP) method for screening them is desirable. We describe here a new method using a device comprised of microfluidic channels and a distributed pneumatic pump (BioFlux) that provides fluid flow to 96 individual biofilms. This device allows fine control of continuous or intermittent fluid flow over a broad range of flow rates, and the use of a standard well plate format provides compatibility with plate readers. We show that use of green fluorescent protein (GFP)-expressing bacteria, staining with propidium iodide, and measurement of fluorescence with a plate reader permit rapid and accurate determination of biofilm viability. The biofilm viability measured with the plate reader agreed with that determined using plate counts, as well as with the results of fluorescence microscope image analysis. Using BioFlux and the plate reader, we were able to rapidly screen the effects of several antimicrobials on the viability of Pseudomonas aeruginosa PAO1 flow biofilms.Bacterial biofilms are surface-attached communities that are encased in a polymeric matrix, which exhibit a high degree of resistance to antimicrobial agents and the host immune system (12, 16). This makes them medically important; diseases with a biofilm component are chronic and difficult to eradicate. Examples of such diseases are cystitis (1), endocarditis (31), cystic fibrosis (35), and middle-ear (17) and indwelling medical device-associated (20) infections. Biofilms also play important environmental roles in, for example, wastewater treatment (38), bioremediation (29, 30), biofouling (7), and biocorrosion (2). Better control of biofilms requires elucidation of the molecular basis of their superior resistance (by identifying resistance-compromised mutants) and identification of compounds with antibiofilm activity. While our understanding of these aspects of biofilms has increased (11, 15, 25-27, 36), further work, including development of accurate high-throughput (HTP) methods for screening biofilm viability, is needed.Two major biofilm models are studied in the laboratory, biofilms grown without a continuous flow of fresh medium and biofilms grown with a continuous flow of fresh medium; examples of these two models are microtiter well biofilms and flow cell biofilms, respectively. Methods have been developed for HTP screening of the viability of static biofilms (6, 28, 32, 33), but there are no methods for HTP screening of flow biofilms. The latter biofilms are typically grown in flow cells, which have to be examined individually to determine viability and thus cannot be used for rapid screening. An HTP screening method for flow biofilms is desirable, as these biofilms more closely approximate natural biofilms and can differ from static biofilms evidently due to hydrodynamic influences on cell signaling (22, 34). For example, the ability of rpoS-deficient Escherichia coli (lacking σS) to form flow biofilms is impaired, but its capacity to form biofilms under static conditions is enhanced (18).We describe here a new application of a recently developed device (8-10, 13), the “BioFlux” device consisting of microfluidic channels for biofilm growth. Other microfluidic devices have recently been used for biofilm formation (14, 19, 21, 23), but none of them has been used for HTP screening. The BioFlux device permits rapid measurement of the fluorescence of flow biofilms with a plate reader, which permits initial HTP screening of the viability of such biofilms.  相似文献   
949.

Background  

The first two enzymatic steps of monoterpene indole alkaloid (MIA) biosynthetic pathway are catalysed by strictosidine synthase (STR) that condensates tryptamine and secologanin to form strictosidine and by strictosidine β-D-glucosidase (SGD) that subsequently hydrolyses the glucose moiety of strictosidine. The resulting unstable aglycon is rapidly converted into a highly reactive dialdehyde, from which more than 2,000 MIAs are derived. Many studies were conducted to elucidate the biosynthesis and regulation of pharmacologically valuable MIAs such as vinblastine and vincristine in Catharanthus roseus or ajmaline in Rauvolfia serpentina. However, very few reports focused on the MIA physiological functions.  相似文献   
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号