首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   4篇
  31篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2014年   2篇
  2013年   3篇
  2012年   3篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1988年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
11.
The objective of this study is to define the geographic distribution of Leopardus tigrinus and L. geoffroyi in one of the few regions of South America where they co-occur, the state of Rio Grande do Sul (RS), in southernmost Brazil. We compiled 133 records for both species and constructed a distribution map, which shows sharp geographic segregation between them. Leopardus tigrinus was found to be associated more with forested ecoregions in the northern part of the state, while L. geoffroyi records were mainly associated with open habitats of the Pampas biome in southern RS. We present data on the diet of these two species that indicate trophic niche separation between them in this region of geographic contact. Our results thus suggest that these species exhibit ecological partitioning with respect to habitat and prey, and that these factors may influence the observed pattern of limited spatial overlap in this region.  相似文献   
12.
13.
14.
Electrophoretic analyses of muscle proteins in whole musclehomogenates and single muscle fiber segments were used to examine myosin heavy chain (MHC) and myosin light chain 2 (MLC2) isoform composition and fiber type populations in soleus muscles from spontaneously hypertensive rats (SHRs) and their age-matchednormotensive controls [Wistar-Kyoto (WKY) rats], at threestages in the development of high blood pressure (4 wk, 16 wk, and 24 wk of age). Demembranated (chemically skinned with 2% Triton X-100),single fiber preparations were used to determine the maximumCa2+-activated force percross-sectional area, calcium sensitivity, and degree of cooperativityof the contractile apparatus andCa2+-regulatory system withrespect to Ca2+. The results showthat, at all ages examined, 1) SHRsoleus contained a lower proportion of MHCI and MLC2 slow (MLC2s) and ahigher proportion of MHCIIa, MHCIId/x, and MLC2 fast (MLC2f )isoforms than the age-matched controls;2) random dissection of single fibers from SHR and WKY soleus produced four populations of fibers: type I (expressing MHCI), type IIA (expressing MHCIIa), hybrid typeI+IIA (coexpressing MHCI and MHCIIa), and hybrid type IIA+IID (coexpressing MHCIIa and MHCIId/x); and3) single fiber dissection from SHRsoleus yielded a lower proportion of type I fibers, a higher proportionof fast-twitch fibers (types IIA and IIA+IID), and a higher proportionof hybrid fibers (types I+IIA and IIA+IID) than the homologous musclesfrom the age-matched WKY rats. Because the presence of hybrid fibers isviewed as a marker of muscle transformation, these data suggest thatSHR soleus undergoes transformation well into adulthood. Our data showalso that, for a given fiber type, there are no significant differencesbetween SHR and WKY soleus muscles with respect to any of theCa2+-activation propertiesexamined. This finding indicates that the lower specific tensionsreported in the literature for SHR soleus muscles are not due tostrain- or hypertension-related differences in the function of thecontractile apparatus or regulatory system.  相似文献   
15.
The structure of 24-methylenecholest-5-en-3beta,7beta,19-triol (II) isolated from the soft coral Litophyton viridis, has been established by X-ray diffraction analysis. The compound is accompanied by its 7-monoacetate derivative.  相似文献   
16.
A novel sterol, 4α-methyl-3β,8β-dihydroxy-5α-ergost-24(28)-en-23-one (I), has been isolated from the soft coral Litophyton viridis. Its structure and relative configuration has been established by X-Ray diffraction analysis.  相似文献   
17.
Extensive evidence indicates the influence of the cholinergic system on emotional processing. Previous findings provided new insights into the underlying mechanisms of long-term anxiety, showing that rats injected with a single systemic dose of pilocarpine—a muscarinic receptor (mAChR) agonist—displayed persistent anxiogenic-like responses when evaluated in different behavioral tests and time-points (24 h up to 3 months later). Herein, we investigated whether the pilocarpine-induced long-term anxiogenesis modulates the HPA axis function and the putative involvement of NMDA receptors (NMDARs) following mAChRs activation. Accordingly, adult male Wistar rats presented anxiogenic-like behavior in the elevated plus-maze (EPM) after 24 h or 1 month of pilocarpine injection (150 mg/kg, i.p.). In these animals, mAChR activation disrupted HPA axis function inducing a long-term increase of corticosterone release associated with a reduced expression of hippocampal GRs, as well as consistently decreased NMDAR subunits expression. Furthermore, in another group of rats injected with memantine–an NMDARs antagonist (4 mg/kg, i.p.)–prior to pilocarpine, we found inhibition of anxiogenic-like behaviors in the EPM but no further alterations in the pilocarpine-induced NMDARs downregulation. Our data provide evidence that behavioral anxiogenesis induced by mAChR activation effectively yields short- and long-term alterations in hippocampal NMDARs expression associated with impairment of hippocampal inhibitory regulation of HPA axis activity. This is a novel mechanism associated with anxiety-like responses in rats, which comprise a putative target to future translational studies.  相似文献   
18.
Compared with NMDA receptor-dependent LTP, much less is known about the mechanism of induction of NMDA receptor-independent LTP; the most extensively studied form of which is mossy fiber LTP in the hippocampus. In the present study we show that Ca2+-induced Ca2+ release from intracellular stores is involved in the induction of mossy fiber LTP. This release also contributes to the kainate receptor-dependent component of the pronounced synaptic facilitation that occurs during high-frequency stimulation. We also present evidence that the trigger for this Ca2+ release is Ca2+ permeation through kainate receptors. However, these novel synaptic mechanisms can be bypassed when the Ca2+ concentration is raised (from 2 to 4 mM), via a compensatory involvement of L-type Ca2+ channels. These findings suggest that presynaptic kainate receptors at mossy fiber synapses can initiate a cascade involving Ca2+ release from intracellular stores that is important in both short-term and long-term plasticity.  相似文献   
19.
There is intense interest in understanding the molecular mechanisms involved in long-term potentiation (LTP) in the hippocampus. Significant progress in our understanding of LTP has followed from studies of glutamate receptors, of which there are four main subtypes (alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA), N-methyl-D-aspartate (NMDA), mGlu and kainate). This article summarizes the evidence that the kainate subtype of glutamate receptor is an important trigger for the induction of LTP at mossy fibre synapses in the CA3 region of the hippocampus. The pharmacology of the first selective kainate receptor antagonists, in particular the GLU(K5) subunit selective antagonist LY382884, is described. LY382884 selectively blocks the induction of mossy fibre LTP, in response to a variety of different high-frequency stimulation protocols. This antagonist also inhibits the pronounced synaptic facilitation of mossy fibre transmission that occurs during high-frequency stimulation. These effects are attributed to the presence of presynaptic GLU(K5)-subunit-containing kainate receptors at mossy fibre synapses. Differences in kainate receptor-dependent synaptic facilitation of AMPA and NMDA receptor-mediated synaptic transmission are described. These data are discussed in the context of earlier reports that glutamate receptors are not involved in mossy fibre LTP and more recent experiments using kainate receptor knockout mice, that argue for the involvement of GLU(K6) but not GLU(K5) kainate receptor subunits. We conclude that activation of presynaptic GLU(K5)-containing kainate receptors is an important trigger for the induction of mossy fibre LTP in the hippocampus.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号