首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1136篇
  免费   75篇
  2024年   3篇
  2023年   14篇
  2022年   19篇
  2021年   44篇
  2020年   28篇
  2019年   39篇
  2018年   41篇
  2017年   26篇
  2016年   39篇
  2015年   47篇
  2014年   74篇
  2013年   69篇
  2012年   73篇
  2011年   88篇
  2010年   50篇
  2009年   34篇
  2008年   60篇
  2007年   53篇
  2006年   45篇
  2005年   43篇
  2004年   46篇
  2003年   41篇
  2002年   40篇
  2001年   24篇
  2000年   12篇
  1999年   16篇
  1998年   8篇
  1997年   8篇
  1996年   7篇
  1995年   3篇
  1994年   4篇
  1992年   17篇
  1991年   11篇
  1990年   8篇
  1989年   7篇
  1988年   3篇
  1987年   8篇
  1986年   8篇
  1985年   3篇
  1984年   8篇
  1983年   8篇
  1981年   4篇
  1980年   3篇
  1979年   4篇
  1978年   3篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1972年   2篇
  1971年   2篇
排序方式: 共有1211条查询结果,搜索用时 15 毫秒
961.
The biosynthesis of mycobacterial mannose-containing lipoglycans, such as lipomannan (LM) and the immunomodulator lipoarabinomanan (LAM), is carried out by the GT-C superfamily of glycosyltransferases that require polyprenylphosphate-based mannose (PPM) as a sugar donor. The essentiality of lipoglycan synthesis for growth makes the glycosyltransferase that synthesizes PPM, a potential drug target in Mycobacterium tuberculosis, the causative agent of tuberculosis. In M. tuberculosis, PPM has been shown to be synthesized by Ppm1 in enzymatic assays. However, genetic evidence for its essentiality and in vivo role in LM/LAM and PPM biosynthesis is lacking. In this study, we demonstrate that MSMEG3859, a Mycobacterium smegmatis gene encoding the homologue of the catalytic domain of M. tuberculosis Ppm1, is essential for survival. Depletion of MSMEG3859 in a conditional mutant of M. smegmatis resulted in the loss of higher order phosphatidyl-myo-inositol mannosides (PIMs) and lipomannan. We were also able to demonstrate that two other M. tuberculosis genes encoding glycosyltransferases that either had been shown to possess PPM synthase activity (Rv3779), or were involved in synthesizing similar polyprenol-linked donors (ppgS), were unable to compensate for the loss of MSMEG3859 in the conditional mutant.  相似文献   
962.
963.
A decade since the availability of Mycobacterium tuberculosis (Mtb) genome sequence, no promising drug has seen the light of the day. This not only indicates the challenges in discovering new drugs but also suggests a gap in our current understanding of Mtb biology. We attempt to bridge this gap by carrying out extensive re-annotation and constructing a systems level protein interaction map of Mtb with an objective of finding novel drug target candidates. Towards this, we synergized crowd sourcing and social networking methods through an initiative 'Connect to Decode' (C2D) to generate the first and largest manually curated interactome of Mtb termed 'interactome pathway' (IPW), encompassing a total of 1434 proteins connected through 2575 functional relationships. Interactions leading to gene regulation, signal transduction, metabolism, structural complex formation have been catalogued. In the process, we have functionally annotated 87% of the Mtb genome in context of gene products. We further combine IPW with STRING based network to report central proteins, which may be assessed as potential drug targets for development of drugs with least possible side effects. The fact that five of the 17 predicted drug targets are already experimentally validated either genetically or biochemically lends credence to our unique approach.  相似文献   
964.
Interactions between genetic and environmental risk factors underlie a number of neuropsychiatric disorders, including schizophrenia (SZ) and autism (AD). Due to the complexity and multitude of the genetic and environmental factors attributed to these disorders, recent research strategies focus on elucidating the common molecular pathways through which these multiple risk factors may function. In this study, we examine the combined effects of a haplo-insufficiency of glutamate carboxypeptidase II (GCPII) and dietary folic acid deficiency. In addition to serving as a neuropeptidase, GCPII catalyzes the absorption of folate. GCPII and folate depletion interact within the one-carbon metabolic pathway and/or of modulate the glutamatergic system. Four groups of mice were tested: wild-type, GCPII hypomorphs, and wild-types and GCPII hypomorphs both fed a folate deficient diet. Due to sex differences in the prevalence of SZ and AD, both male and female mice were assessed on a number of behavioral tasks including locomotor activity, rotorod, social interaction, prepulse inhibition, and spatial memory. Wild-type mice of both sexes fed a folic acid deficient diet showed motor coordination impairments and cognitive deficits, while social interactions were decreased only in males. GCPII mutant mice of both sexes also exhibited reduced social propensities. In contrast, all folate-depleted GCPII hypomorphs performed similarly to untreated wild-type mice, suggesting that reduced GCPII expression and folate deficiency are mutually protective. Analyses of folate and neurometabolite levels associated with glutamatergic function suggest several potential mechanisms through which GCPII and folate may be interacting to create this protective effect.  相似文献   
965.
Oxidative stress occurs when antioxidant defenses are overwhelmed by oxygen-reactive species and can lead to cellular damage, as seen in several neurodegenerative disorders. Microglia are specialized cells in the central nervous system that act as the first and main form of active immune defense in the response to pathological events. Autotaxin (ATX) plays an important role in the modulation of critical cellular functions, through its enzymatic production of lysophosphatidic acid (LPA). In this study, we investigated the potential role of ATX in the response of microglial cells to oxidative stress. We show that treatment of a microglial BV2 cell line with hydrogen peroxide (H(2)O(2)) stimulates ATX expression and LPA production. Stable overexpression of ATX inhibits microglial activation (CD11b expression) and protects against H(2)O(2)-treatment-induced cellular damage. This protective effect of ATX was partially reduced in the presence of the LPA-receptor antagonist Ki16425. ATX overexpression was also associated with a reduction in intracellular ROS formation, carbonylated protein accumulation, proteasomal activity, and catalase expression. Our results suggest that up-regulation of ATX expression in microglia could be a mechanism for protection against oxidative stress, thereby reducing inflammation in the nervous system.  相似文献   
966.
In previous studies, the relaxant effect of Tymus vulgaris has been demonstrated on guinea pig tracheal chains. Therefore, in the present study, the relaxant effects of n-hexane, dichloromethane, methanol and aqueous fractions of Tymus vulgaris on tracheal chains of guinea pigs were examined. The relaxant effects of four cumulative concentrations of each fraction (0.4, 0.8, 1.2 and 1.6 g%) in comparison to saline as negative control and four cumulative concentrations of theophylline (0.2, 0.4, 0.6 and 0.8 mM) were examined for their relaxant effects on precontracted tracheal chains of guinea pig by 60 mM KCl (group 1) and 10 ìì methacholine (group 2, n = 7 for each group). In group 1, all concentrations of the n-hexane fraction and theophylline and three last concentrations (0.8, 1.2 and 1.6 g%) of dichloromethane and two higher concentrations (1.2 and 1.6 g%) of methanol fractions showed significant relaxant effects compared to that of saline (p<0.05 to p<0.001). In group 2, all concentrations of theophylline, n-hexane and dichloromethane fractions and three concentrations (0.8, 1.2 and 1.6 g%) of methanol and two higher concentrations (1.2 and 1.6 g%) of aqueous fractions showed significant relaxant effects compared to that of saline (p<0.05 to p<0.001). In addition, with group 1, the relaxant effect of all concentrations of all fractions except the n-hexane fraction, were significantly less than those of theophylline (p<0.05 to p<0.001). The n-hexane fraction showed higher relaxant effect than theophylline. The relaxant effect of all concentrations of the n-hexane fraction and the three last concentrations (0.8, 1.2 and 1.6 g%) of dichloromethane and aqueous fractions were significantly greater in group 2 than in group 1 (p<0.05 to p<0.001). There were significant positive correlations between the relaxant effects and concentrations for theophylline and all fractions (except aqueous fraction in group 1) in both groups, but a negative correlation for the aqueous fraction in group 1 (p<0.05 to p<0.001). These results showed a potent relaxant effect for n-hexane and weaker relaxant effect for other fractions from Tymus vulgaris on tracheal chains of guinea pigs.  相似文献   
967.
Background Coagulation factor II G20210A and coagulation factor V (Leiden) G1691A single nucleotide polymorphisms (SNPs) are major inherited risk factors of venous thromboembolism. In view of the heterogeneity in their world distribution and lack of sufficient information about their distribution among Chechans, we addressed the prevalence of these SNPs in the Chechan population in Jordan, a genetically isolated population. Methods and Results factor II G20210A and factor V Leiden SNPs were analysed by polymerase chain reaction and restriction fragment length polymorphism (PCR?CRFLP) method and Amplification refractory mutation detection system (ARMS) respectively in 120 random unrelated subjects from the Chechan population in Jordan. Among the subjects studied for factor II G20210A mutation there were three individuals carrying this mutation as heterozygous (one female and two male), giving a prevalence of 2.5?% and an allele frequency of 1.25?%. No homozygous factor II allele was found. Factor V Leiden G1691A mutation was detected as heterozygous in 22 of 120 of individuals (17 female and five male) indicating a prevalence of 18.3?% and allele frequency of 9.2?%. No homozygous allele was found. Conclusion Our results indicated that prevalence of factor II G20210A mutation in the Chechan population is similar to prevalence in Jordan and Caucasian populations (1?C6?%) while the prevalence of factor V Leiden was higher in the Chechan population compared to Jordan and Caucasian populations (2?C15?%).  相似文献   
968.
Bovine enteroviruses belong to the family Picornaviridae. Little is known about their pathogenic potential; however, they cause asymptomatic infections in cattle and are excreted in feces. In the present study, viruses isolated from environmental samples were sequenced. According to phylogenetic analyses and standard picornavirus nomenclature, these isolates constitute a new type of bovine enterovirus serogroup A.  相似文献   
969.
Exosomes are discussed as potent therapeutics due to efficient transfer of proteins, mRNA and miRNA in selective targets. However, therapeutic exosome application requires knowledge on target structures to avoid undue delivery. Previous work suggesting exosomal tetraspanin-integrin complexes to be involved in target cell binding, we aimed to control this hypothesis and to define target cell ligands. Exosomes are rich in tetraspanins that associate besides other molecules with integrins. Co-immunoprecipitation of exosome lysates from rat tumor lines that differ only with respect to Tspan8 and beta4 revealed promiscuity of tetraspanin-integrin associations, but also few preferential interactions like that of Tspan8 with alpha4 and beta4 integrin chains. These minor differences in exosomal tetraspanin-complexes strongly influence target cell selection in vitro and in vivo, efficient exosome-uptake being seen in hematopoietic cells and solid organs. Exosomes expressing the Tspan8-alpha4 complex are most readily taken up by endothelial and pancreas cells, CD54 serving as a major ligand. Selectivity of uptake was confirmed with exosomes from an alpha4 cDNA transfected Tspan8(+) lymph node stroma line. Distinct from exosomes from the parental line, the latter preferentially targeted endothelial cells and in vivo the pancreas. Importantly, pulldown experiments provided strong evidence that exosome-uptake occurs in internalization-prone membrane domains. This is the first report on the exosomal tetraspanin web contributing to target cell selection such that predictions can be made on potential targets, which will facilitate tailoring exosomes for drug delivery.  相似文献   
970.
Epinephrine is one of the major hormones involved in glucose counter-regulation and gluconeogenesis. However, little is known about its importance in energy homeostasis during fasting. Our objective is to study the specific role of epinephrine in glucose and lipid metabolism during starvation. In our experiment, we subject regular mice and epinephrine-deficient mice to a 48-h fast then we evaluate the different metabolic responses to fasting. Our results show that epinephrine is not required for glucose counter-regulation: epinephrine-deficient mice maintain their blood glucose at normal fasting levels via glycogenolysis and gluconeogenesis, with normal fasting-induced changes in the peroxisomal activators: peroxisome proliferator activated receptor γ coactivator α (PGC-1α), fibroblast growth factor 21 (FGF-21), peroxisome proliferator activated receptor α (PPAR-α), and sterol regulatory element binding protein (SREBP-1c). However, fasted epinephrine-deficient mice develop severe ketosis and hepatic steatosis, with evidence for inhibition of hepatic autophagy, a process that normally provides essential energy via degradation of hepatic triglycerides during starvation. We conclude that, during fasting, epinephrine is not required for glucose homeostasis, lipolysis or ketogenesis. Epinephrine may have an essential role in lipid handling, possibly via an autophagy-dependent mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号