首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1491篇
  免费   72篇
  国内免费   2篇
  1565篇
  2023年   2篇
  2022年   6篇
  2021年   18篇
  2020年   5篇
  2019年   5篇
  2018年   13篇
  2017年   12篇
  2016年   21篇
  2015年   60篇
  2014年   68篇
  2013年   84篇
  2012年   91篇
  2011年   119篇
  2010年   72篇
  2009年   69篇
  2008年   95篇
  2007年   108篇
  2006年   106篇
  2005年   95篇
  2004年   96篇
  2003年   81篇
  2002年   98篇
  2001年   13篇
  2000年   16篇
  1999年   22篇
  1998年   26篇
  1997年   17篇
  1996年   18篇
  1995年   20篇
  1994年   8篇
  1993年   11篇
  1992年   9篇
  1991年   10篇
  1990年   6篇
  1989年   10篇
  1988年   7篇
  1987年   5篇
  1986年   5篇
  1985年   4篇
  1984年   7篇
  1983年   5篇
  1982年   4篇
  1981年   2篇
  1978年   3篇
  1977年   2篇
  1976年   3篇
  1975年   1篇
  1973年   3篇
  1970年   1篇
  1969年   1篇
排序方式: 共有1565条查询结果,搜索用时 15 毫秒
71.
The organophosphorous pesticide, demeton-S-methyl was transformed byCorynebacterium glutamicum in co-metabolism with more readilydegradable substrates. Glucose, acetate and fructose were tested as growth substrates, and the highest demeton-S-methyl biotransformation average rate (0.78 mg l-1 h-1) and maximum instantaneous rate (1.4 mg l-1 h-1) were achieved on fructose. This higher efficiency seems to be linked to the atypical behavior of C. glutamicum grown on fructose, characterized by a prolonged period of accelerating growth instead of a constant growth rate observed on glucose or acetate. More precisely, for growth rates in the 0.1–0.4 h-1 range, a direct coupling between the specific demeton-S-methyl consumption rate and the growth rate was demonstrated on fructose during batch –, steady state continuous – or continuous cultures with a controlled transient growth rate (accelerostat technology). The demeton-S-methyl biotransformation was more favoured during an acceleration phase of the growth rate.  相似文献   
72.
Abstract To investigate the phylogenetic relationships and molecular evolution of α-amylase (Amy) genes in the Drosophila montium species subgroup, we constructed the phylogenetic tree of the Amy genes from 40 species from the montium subgroup. On our tree the sequences of the auraria, kikkawai, and jambulina complexes formed distinct tight clusters. However, there were a few inconsistencies between the clustering pattern of the sequences and taxonomic classification in the kikkawai and jambulina complexes. Sequences of species from other complexes (bocqueti, bakoue, nikananu, and serrata) often did not cluster with their respective taxonomic groups. This suggests that relationships among the Amy genes may be different from those among species due to their particular evolution. Alternatively, the current taxonomy of the investigated species is unreliable. Two types of divergent paralogous Amy genes, the so-called Amy1- and Amy3-type genes, previously identified in the D. kikkawai complex, were common in the montium subgroup, suggesting that the duplication event from which these genes originate is as ancient as the subgroup or it could even predate its differentiation. Thc Amy1-type genes were closer to the Amy genes of D. melanogaster and D. pseudoobscura than to the Amy3-type genes. In the Amy1-type genes, the loss of the ancestral intron occurred independently in the auraria complex and in several Afrotropical species. The GC content at synonymous third codon positions (GC3s) of the Amy1-type genes was higher than that of the Amy3-type genes. Furthermore, the Amy1-type genes had more biased codon usage than the Amy3-type genes. The correlations between GC3s and GC content in the introns (GCi) differed between these two Amy-type genes. These findings suggest that the evolutionary forces that have affected silent sites of the two Amy-type genes in the montium species subgroup may differ.  相似文献   
73.
Total lipid fatty acid composition was investigated in brain hemispheres of male Spontaneously Hypertensive Rats (SHR), compared with normotensive Wistar Kyoto rats (WKY) used as controls. Both strains were suckled by adoptive Wistar mothers, and then fed a standard diet after weaning. No difference was observed between the two hemispheres of WKY killed either at 10 or 30 days. In SHR killed at 10 days, the two hemispheres showed differences, SHR left hemispheres exhibiting greater fatty acid composition changes than those of WKY, phenomenon that toned down at 30 days. Hence, SHR pups showed a different total lipid fatty acid composition of their brain hemispheres when compared with their WKY controls, though the two strains received the same diet. Genetically programmed hypertension might be, directly or not, involved in these changes.  相似文献   
74.
Pseudomonas aeruginosa is an environmental bacterium involved in mineralization of organic matter. It is also an opportunistic pathogen able to cause serious infections in immunocompromised hosts. As such, it is exposed to xenobiotics including solvents, heavy metals, and antimicrobials. We studied the response of P. aeruginosa upon exposure to heavy metals or antibiotics to investigate whether common regulatory mechanisms govern resistance to both types of compounds. We showed that sublethal zinc concentrations induced resistance to zinc, cadmium, and cobalt, while lethal zinc concentrations selected mutants constitutively resistant to these heavy metals. Both zinc-induced and stable zinc-resistant strains were also resistant to the carbapenem antibiotic imipenem. On the other hand, only 20% of clones selected on imipenem were also resistant to zinc. Heavy metal resistance in the mutants could be correlated by quantitative real time PCR with increased expression of the heavy metal efflux pump CzcCBA and its cognate two-component regulator genes czcR-czcS. Western blot analysis revealed reduced expression of the basic amino acid and carbapenem-specific OprD porin in all imipenem-resistant mutants. Sequencing of the czcR-czcS DNA region in eight independent zinc- and imipenem-resistant mutants revealed the presence of the same V194L mutation in the CzcS sensor protein. Overexpression in a susceptible wild type strain of the mutated CzsS protein, but not of the wild type form, resulted in decreased oprD and increased czcC expression. We further show that zinc is released from latex urinary catheters into urine in amounts sufficient to induce carbapenem resistance in P. aeruginosa, possibly compromising treatment of urinary tract infections by this class of antibiotics.  相似文献   
75.
Cardiac resynchronization therapy (CRT) decreases muscle sympathetic nerve activity (MSNA) in patients with severe congestive heart failure (CHF) and cardiac asynchrony. Whether this affects equally patients who clinically respond or not to CRT is unknown. We tested the hypothesis that the favorable effects of CRT on MSNA disappear on CRT interruption only in those who respond to CRT. Twenty-three consecutive CHF patients participated in the study, among whom 16 presented a symptomatic improvement by one or more New York Heart Association (NYHA) functional classes 15 +/- 5 mo after CRT (responders), and seven had not improved after 12 +/- 4 mo of CRT (nonresponders). MSNA and echocardiographic recordings were obtained in random order during atrio-right ventricular pacing (ARV), without stimulation in patients who were not pacemaker dependent (OFF, n = 17), and during atrio-biventricular pacing (BIV). Responders had a longer 6-min walking distance, a lower NYHA class and brain natriuretic peptide levels, and a better quality of life than did nonresponders (all P < 0.05). MSNA increased by 25 +/- 7% in the responders, whereas it remained unchanged in the nonresponders, when shifting from the BIV mode to a nonsynchronous condition (ARV and OFF modes) (P < 0.01). Cardiac output decreased by 0.7 +/- 0.2 l/min in the responders but did not change when shifting from the BIV mode to the nonsynchronous pacing mode in the nonresponders (P < 0.01). In conclusion, reversible sympathoinhibition is a marker of the clinical response to CRT.  相似文献   
76.
The lipid composition of plasma membrane (PM) and the corresponding detergent-insoluble membrane (DIM) fraction were analyzed with a specific focus on highly polar sphingolipids, so-called glycosyl inositol phosphorylceramides (GIPCs). Using tobacco (Nicotiana tabacum) ‘Bright Yellow 2’ cell suspension and leaves, evidence is provided that GIPCs represent up to 40 mol % of the PM lipids. Comparative analysis of DIMs with the PM showed an enrichment of 2-hydroxylated very-long-chain fatty acid-containing GIPCs and polyglycosylated GIPCs in the DIMs. Purified antibodies raised against these GIPCs were further used for immunogold-electron microscopy strategy, revealing the distribution of polyglycosylated GIPCs in domains of 35 ± 7 nm in the plane of the PM. Biophysical studies also showed strong interactions between GIPCs and sterols and suggested a role for very-long-chain fatty acids in the interdigitation between the two PM-composing monolayers. The ins and outs of lipid asymmetry, raft formation, and interdigitation in plant membrane biology are finally discussed.Eukaryotic plasma membranes (PMs) are composed of three main classes of lipids, glycerolipids, sphingolipids, and sterols, which may account for up to 100,000 different molecular species (Yetukuri et al., 2008; Shevchenko and Simons, 2010). Overall, all glycerolipids share the same molecular moieties in plants, animals, and fungi. By contrast, sterols and sphingolipids are different and specific to each kingdom. For instance, the plant PM contains an important number of sterols, among which β-sitosterol, stigmasterol, and campesterol predominate (Furt et al., 2011). In addition to free sterols, phytosterols can be conjugated to form steryl glycosides (SG) and acyl steryl glycosides (ASG) that represent up to approximately 15% of the tobacco (Nicotiana tabacum) PM (Furt et al., 2010). As for sphingolipids, sphingomyelin, the major phosphosphingolipid in animals, which harbors a phosphocholine as a polar head, is not detected in plants. Glycosyl inositol phosphorylceramides (GIPCs) are the major class of sphingolipids in plants, but they are absent in animals (Sperling and Heinz, 2003; Pata et al., 2010). Sphingolipidomic approaches identified up to 200 plant sphingolipids (for review, see Pata et al., 2010; Cacas et al., 2013).Although GIPCs belong to one of the earliest classes of plant sphingolipids that were identified in the late 1950s (Carter et al., 1958), only a few GIPCs have been structurally characterized to date because of their high polarity and a limited solubility in typical lipid extraction solvents. For these reasons, they were systematically omitted from published plant PM lipid composition. GIPCs are formed by the addition of an inositol phosphate to the ceramide moiety, the inositol headgroup of which can then undergo several glycosylation steps. The dominant glycan structure, composed of a hexose-GlcA linked to the inositol, is called series A. Polar heads containing three to seven sugars, so-called series B to F, have been identified and appeared to be species specific (Buré et al., 2011; Cacas et al., 2013; Mortimer et al., 2013). The ceramide moiety of GIPCs consists of a long-chain base (LCB), mainly t18:0 (called phytosphingosine) or t18:1 compounds (for review, see Pata et al., 2010), to which is amidified a very-long-chain fatty acid (VLCFA), the latter of which is mostly 2-hydroxylated (hVLCFA) with an odd or even number of carbon atoms. In plants, little is known about the subcellular localization of GIPCs. It is assumed, however, that they would be highly represented in the PM (Worrall et al., 2003; Sperling et al., 2005), even if this remains to be experimentally proven. The main argument supporting such an assumption is the strong enrichment of trihydroxylated LCB (t18:n) in detergent-insoluble membrane (DIM) fractions (Borner et al., 2005; Lefebvre et al., 2007), LCB being known to be predominant in GIPC’s core structure as aforementioned.In addition to this chemical complexity, lipids are not evenly distributed within the PM. Sphingolipids and sterols can preferentially interact with each other and segregate to form microdomains dubbed the membrane raft (Simons and Toomre, 2000). The membrane raft hypothesis suggests that lipids play a regulatory role in mediating protein clustering within the bilayer by undergoing phase separation into liquid-disordered and liquid-ordered phases. The liquid-ordered phase, termed the membrane raft, was described as enriched in sterol and saturated sphingolipids and is characterized by tight lipid packing. Proteins, which have differential affinities for each phase, may become enriched in, or excluded from, the liquid-ordered phase domains to optimize the rate of protein-protein interactions and maximize signaling processes. In animals, rafts have been implicated in a huge range of cellular processes, such as hormone signaling, membrane trafficking in polarized epithelial cells, T cell activation, cell migration, and the life cycle of influenza and human immunodeficiency viruses (Simons and Ikonen, 1997; Simons and Gerl, 2010). In plants, evidence is increasing that rafts are also involved in signal transduction processes and membrane trafficking (for review, see Mongrand et al., 2010; Simon-Plas et al., 2011; Cacas et al., 2012a).Moreover, lipids are not evenly distributed between the two leaflets of the PM. Within the PM of eukaryotic cells, sphingolipids are primarily located in the outer monolayer, whereas unsaturated phospholipids are predominantly exposed on the cytosolic leaflet. This asymmetrical distribution has been well established in human red blood cells, in which the outer leaflet contains sphingomyelin, phosphatidylcholine, and a variety of glycolipids like gangliosides. By contrast, the cytoplasmic leaflet is composed mostly of phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, and their phosphorylated derivatives (Devaux and Morris, 2004). With regard to sphingolipids and glycerolipids, the asymmetry of the former is established during their biosynthesis and that of the latter requires ATPases such as the aminophospholipid translocase that transports lipids from the outer to the inner leaflet as well as multiple drug resistance proteins that transport phosphatidylcholine in the opposite direction (Devaux and Morris, 2004). This ubiquitous scheme encountered in animal cells could apply in plant cells as proposed (Tjellstrom et al., 2010). Indeed, the authors showed that there is a pronounced transverse lipid asymmetry in root at the PM. Phospholipids and galactolipids dominate the cytosolic leaflet, whereas the apoplastic leaflet is enriched in sphingolipids and sterols.From such a high diversity of the plant PM thus arises the question of the respective contribution of lipids to membrane suborganization. Our group recently tackled this aspect by characterizing the order level of liposomes prepared from various plant lipids and labeled with the environment-sensitive probe di-4-ANEPPDHQ (Grosjean et al., 2015). Fluorescence spectroscopy experiments showed that, among phytosterols, campesterol exhibits the strongest ability to order model membranes. In agreement with these data, spatial analysis of the membrane organization through multispectral confocal microscopy pointed to the strong ability of campesterol to promote liquid-ordered domain formation and organize their spatial distribution at the membrane surface. Conjugated sterols also exhibit a striking ability to order membranes. In addition, GIPCs enhance the sterol-induced ordering effect by emphasizing the formation and increasing the size of sterol-dependent ordered domains.The aim of this study was to reinvestigate the lipid composition and organization of the PM with a particular focus on GIPCs using tobacco leaves and cv Bright Yellow 2 (BY-2) cell cultures as models. Analyzing all membrane lipid classes at once, including sphingolipids, is challenging because they all display dramatically different chemical polarity, from very apolar (like free sterols) to highly polar (like polyglycosylated GIPCs) molecules. Most lipid extraction techniques published thus far use a chloroform/methanol mixture and phase partition to remove contaminants, resulting in the loss GIPCs, which remain in the aqueous phase, unextracted in the insoluble pellet, or at the interphase (Markham et al., 2006). In order to gain access to both glycerolipid and sphingolipid species at a glance, we developed a protocol whereby the esterifed or amidified fatty acids were hydrolyzed from the glycerol backbone (glycerolipids) or the LCB (sphingolipids) of membrane lipids, respectively. Fatty acids were then analyzed by gas chromatography-mass spectrometry (GC-MS) with appropriate internal standards for quantification. We further proposed that the use of methyl tert-butyl ether (MTBE) ensures the extraction of all classes of plant polar lipids. Our results indicate that GIPCs represent up to 40 mol % of total tobacco PM lipids. Interestingly, polyglycolyslated GIPCs are 5-fold enriched in DIMs of BY-2 cells when compared with the PM. Further investigation led us to develop a preparative purification procedure that allowed us to obtain enough material to raise antibodies against GIPCs. Using immunogold labeling on PM vesicles, it was found that polyglycosylated GIPCs cluster in membrane nanodomains, strengthening the idea that lateral nanosegregation of sphingolipids takes place at the PM in plants. Multispectral confocal microscopy was performed on vesicles prepared using GIPCs, phospholipids, and sterols and labeled with the environment-sensitive probe di-4-ANEPPDHQ. Our results show that, despite different fatty acid and polar head compositions, GIPCs extracted from tobacco leaves and BY-2 cells have a similar intrinsic propensity of enhancing vesicle global order together with sterols. Assuming that GIPCs are mostly present in the outer leaflet of the PM, interactions between sterols and sphingolipids were finally studied by the Langmuir monolayer technique, and the area of a single molecule of GIPC, or in interaction with phytosterols, was calculated. Using the calculation docking method, the energy of interaction between GIPCs and phytosterols was determined. A model was proposed in which GIPCs and phytosterols interact together to form liquid-ordered domains and in which the VLCFAs of GIPCs promote the interdigitation of the two membrane leaflets. The implications of domain formation and the asymmetrical distribution of lipids at the PM in plants are also discussed. Finally, we propose a model that reconsiders the intricate organization of the plant PM bilayer.  相似文献   
77.
Summary The differentiation capacity of the rat epididymis after depletion of androgen was studied in organ culture and in castrated rats. The differentiation of narrow cells in 5- and 10-day-old explants and in 10-day-old castrated rats suggests that: (i) the testicular androgens are not essential for their differentiation, (ii) a differential androgen dependence exists among the epididymal cell types, (iii) the undifferentiated epithelial cells are the precursors of the narrow cells.  相似文献   
78.
Bovine leukemia virus (BLV), one of the most common infectious viruses of cattle, is endemic in many herds. Approximately 30-40% of adult cows in the United States are infected by this oncogenic C-type retrovirus and 1-5% of animals will eventually develop a malignant lymphoma. BLV, like the human and simian T cell leukemia viruses, is a deltaretrovirus but, in contrast with the latter, the BLV receptor remains unidentified. In this study, we demonstrate that the amino-terminal 182 residues of the BLV envelope glycoprotein surface unit encompasses the receptor-binding domain. A bona fide interaction of this receptor-binding domain with the BLV receptor was demonstrated by specific interference with BLV, but not human T cell leukemia virus, envelope glycoprotein-mediated binding. We generated a rabbit Ig Fc-tagged BLV receptor-binding domain construct and ascertained that the ligand binds the BLV receptor on target cells from multiple species. Using this tool, we determined that the BLV-binding receptor is expressed on differentiating pro/pre-B cells in mouse bone marrow. However, the receptor was not detected on mature/quiescent B cells but was induced upon B cell activation. Activation of human B and T lymphocytes also induced surface BLV-binding receptor expression and required de novo protein synthesis. Receptor levels were down-regulated as activated lymphocytes returned to quiescence. In the human thymus, BLV-binding receptor expression was specifically detected on thymocytes responding to the IL-7 cytokine. Thus, expression of the BLV-binding receptor is a marker of enhanced metabolic activity in B cells, T cells, and thymocytes.  相似文献   
79.
Amphipathic polymers called amphipols provide a valuable alternative to detergents for keeping integral membrane proteins soluble in aqueous buffers. Here, we characterize spatial contacts of amphipol A8-35 with membrane proteins from two architectural classes: The 8-stranded β-barrel outer membrane protein OmpX and the α-helical protein bacteriorhodopsin. OmpX is well structured in A8-35, with its barrel adopting a fold closely similar to that in dihexanoylphosphocholine micelles. The accessibility of A8-35-trapped OmpX by a water-soluble paramagnetic molecule is highly similar to that in detergent micelles and resembles the accessibility in the natural membrane. For the α-helical protein bacteriorhodopsin, previously shown to keep its fold and function in amphipols, NMR data show that the imidazole protons of a polyhistidine tag at the N-terminus of the protein are exchange protected in the presence of detergent and lipid bilayer nanodiscs, but not in amphipols, indicating the absence of an interaction in the latter case. Overall, A8-35 exhibits protein interaction properties somewhat different from detergents and lipid bilayer nanodiscs, while maintaining the structure of solubilized integral membrane proteins.  相似文献   
80.
The goal of the present study was to identify candidate genes (CGs) involved in fruit quality in peach that can be transferred to other Rosaceae species. Two cDNA libraries from fruit of the “Fantasia” peach cultivar, constructed at two stages of development, were used to generate a set of expressed sequence tag sequences. A total of 1,730 peach unigenes were obtained after clustering. Sequences and corresponding annotations were stored in a relational database and are available through a web interface. Fifty-nine CGs involved in fruit growth and development or fruit quality at maturity, focusing on sweetness, acidity, and phenolic compound content, were selected according to their annotation. Fifty-five primer pairs, designed from peach CG sequences and giving PCR products in peach, were tested in strawberry and 36 gave amplified products. Eight CGs were mapped in peach, 14 in strawberry, four in both species and confirmed the pattern of synteny already proposed using comparative mapping. In peach, the CGs are located in three linkage groups (3, 5, 7), and in strawberry they are distributed in all seven Fragaria linkage groups. Colocalization between some of these CGs and quantitative trait loci for fruit quality traits were identified and are awaiting confirmation in further analyses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号