首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   793篇
  免费   74篇
  2022年   5篇
  2021年   17篇
  2020年   6篇
  2019年   5篇
  2018年   10篇
  2017年   5篇
  2016年   16篇
  2015年   21篇
  2014年   36篇
  2013年   41篇
  2012年   43篇
  2011年   56篇
  2010年   21篇
  2009年   25篇
  2008年   34篇
  2007年   51篇
  2006年   39篇
  2005年   31篇
  2004年   39篇
  2003年   33篇
  2002年   38篇
  2001年   26篇
  2000年   25篇
  1999年   29篇
  1998年   19篇
  1997年   10篇
  1996年   6篇
  1995年   11篇
  1994年   5篇
  1993年   8篇
  1992年   19篇
  1991年   13篇
  1990年   12篇
  1989年   9篇
  1988年   14篇
  1987年   9篇
  1986年   8篇
  1985年   6篇
  1984年   7篇
  1981年   4篇
  1978年   3篇
  1977年   4篇
  1976年   14篇
  1975年   4篇
  1973年   4篇
  1970年   4篇
  1969年   4篇
  1968年   2篇
  1966年   2篇
  1963年   2篇
排序方式: 共有867条查询结果,搜索用时 46 毫秒
61.
The bioluminescent Ca2+-sensitive reporter protein, aequorin, was employed to develop an insect cell-based functional assay system for monitoring receptor-mediated changes of intracellular Ca2 +-concentrations. Drosophila Schneider 2 (S2) cells were genetically engineered to stably express both apoaequorin and the insect tachykinin-related peptide receptor, STKR. Lom-TK III, an STKR agonist, was shown to elicit concentration-dependent bioluminescent responses in these S2-STKR-Aeq cells. The EC50 value for the calcium effect detected by means of aequorin appeared to be nearly identical to the one that was measured by means of Fura-2, a fluorescent Ca2 +-indicator. In addition, this aequorin-based method was also utilised to study receptor antagonists. Experimental analysis of the effects exerted by spantide I, II and III, three potent substance P antagonists, on Lom-TK III-stimulated S2-STKR-Aeq cells showed that these compounds antagonise STKR-mediated responses in a concentration-dependent manner. The rank order of inhibitory potencies was spantide III > spantide II > spantide I. Revised version received: 12 September 2001 Electronic Publication  相似文献   
62.
63.
Despite numerous advances in the identification of the molecular machinery for clathrin-mediated budding at the plasma membrane, the mechanistic details of this process remain incomplete. Moreover, relatively little is known regarding the regulation of clathrin-mediated budding at other membrane systems. To address these issues, we have utilized the powerful new approach of subcellular proteomics to identify novel proteins present on highly enriched clathrin-coated vesicles (CCVs). Among the ten novel proteins identified is the rat homologue of a predicted gene product from human, mouse, and Drosophila genomics projects, which we named enthoprotin. Enthoprotin is highly enriched on CCVs isolated from rat brain and liver extracts. In cells, enthoprotin demonstrates a punctate staining pattern that is concentrated in a perinuclear compartment where it colocalizes with clathrin and the clathrin adaptor protein (AP)1. Enthoprotin interacts with the clathrin adaptors AP1 and with Golgi-localized, gamma-ear-containing, Arf-binding protein 2. Through its COOH-terminal domain, enthoprotin binds to the terminal domain of the clathrin heavy chain and stimulates clathrin assembly. These data suggest a role for enthoprotin in clathrin-mediated budding on internal membranes. Our study reveals the utility of proteomics in the identification of novel vesicle trafficking proteins.  相似文献   
64.
65.
Cyclin-dependent kinase 2 (Cdk2) is essential for initiation of DNA synthesis in higher eukaryotes. Biochemical studies in Xenopus egg extracts and microinjection studies in human cells have suggested an additional function for Cdk2 in activation of Cdk1 and entry into mitosis. To further examine the role of Cdk2 in human cells, we generated stable clones with inducible expression of wild-type and dominant-negative forms of the enzyme (Cdk2-wt and Cdk2-dn, respectively). Both exogenous proteins associated efficiently with endogenous cyclins. Cdk2-wt had no apparent effect on the cell division cycle, whereas Cdk2-dn inhibited progression through several distinct stages. Cdk2-dn induction could arrest cells at the G1/S transition, as previously observed in transient expression studies. However, under normal culture conditions, Cdk2-dn induction primarily arrested cells with S and G2/M DNA contents. Several observations suggested that the latter cells were in G2 phase, prior to the onset of mitosis: these cells contained uncondensed chromosomes, low levels of cyclin B-associated kinase activity, and high levels of tyrosine-phosphorylated Cdk1. Furthermore, Cdk2-dn did not delay progression through mitosis upon release of cells from a nocodazole block. Although the G2 arrest imposed by Cdk2-dn was similar to that imposed by the DNA damage checkpoint, the former was distinguished by its resistance to caffeine. These findings provide evidence for essential functions of Cdk2 during S and G2 phases of the mammalian cell cycle.  相似文献   
66.
Vanillyl-alcohol oxidase (VAO) is member of a newly recognized flavoprotein family of structurally related oxidoreductases. The enzyme contains a covalently linked FAD cofactor. To study the mechanism of flavinylation we have created a design point mutation (His-61 --> Thr). In the mutant enzyme the covalent His-C8alpha-flavin linkage is not formed, while the enzyme is still able to bind FAD and perform catalysis. The H61T mutant displays a similar affinity for FAD and ADP (K(d) = 1.8 and 2.1 microm, respectively) but does not interact with FMN. H61T is about 10-fold less active with 4-(methoxymethyl)phenol) (k(cat) = 0.24 s(-)(1), K(m) = 40 microm) than the wild-type enzyme. The crystal structures of both the holo and apo form of H61T are highly similar to the structure of wild-type VAO, indicating that binding of FAD to the apoprotein does not require major structural rearrangements. These results show that covalent flavinylation is an autocatalytical process in which His-61 plays a crucial role by activating His-422. Furthermore, our studies clearly demonstrate that in VAO, the FAD binds via a typical lock-and-key approach to a preorganized binding site.  相似文献   
67.
68.
A GroEL homolog with a molecular mass of 60 kDa, produced by the primary endosymbiotic bacterium (a Buchnera sp.) of Myzus persicae and released into the hemolymph, has previously been shown to be a key protein in the transmission of potato leafroll virus (PLRV). Like other luteoviruses and pea enation mosaic virus, PLRV readily binds to extracellular Buchnera GroEL, and in vivo interference in this interaction coincides with reduced capsid integrity and loss of infectivity. To gain more knowledge of the nature of the association between PLRV and Buchnera GroEL, the groE operon of the primary endosymbiont of M. persicae (MpB groE) and its flanking sequences were characterized and the PLRV-binding domain of Buchnera GroEL was identified by deletion mutant analysis. MpB GroEL has extensive sequence similarity (92%) with Escherichia coli GroEL and other members of the chaperonin-60 family. The genomic organization of the Buchnera groE operon is similar to that of the groE operon of E. coli except that a constitutive promoter sequence could not be identified; only the heat shock promoter was present. By a virus overlay assay of protein blots, it was shown that purified PLRV bound as efficiently to recombinant MpB GroEL (expressed in E. coli) as it did to wild-type MpB GroEL. Mutational analysis of the gene encoding MpB GroEL revealed that the PLRV-binding site was located in the so-called equatorial domain and not in the apical domain which is generally involved in polypeptide binding and folding. Buchnera GroEL mutants lacking the entire equatorial domain or parts of it lost the ability to bind PLRV. The equatorial domain is made up of two regions at the N and C termini that are not contiguous in the amino acid sequence but are in spatial proximity after folding of the GroEL polypeptide. Both the N- and C-terminal regions of the equatorial domain were implicated in virus binding.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号