首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   292篇
  免费   49篇
  341篇
  2021年   4篇
  2019年   2篇
  2016年   6篇
  2015年   10篇
  2014年   13篇
  2013年   11篇
  2012年   14篇
  2011年   14篇
  2010年   14篇
  2009年   7篇
  2008年   4篇
  2007年   11篇
  2006年   5篇
  2005年   9篇
  2004年   5篇
  2003年   10篇
  2002年   6篇
  2001年   4篇
  2000年   11篇
  1999年   21篇
  1998年   4篇
  1997年   4篇
  1996年   7篇
  1995年   7篇
  1994年   5篇
  1993年   3篇
  1992年   9篇
  1991年   9篇
  1990年   6篇
  1989年   6篇
  1988年   8篇
  1987年   4篇
  1986年   7篇
  1985年   8篇
  1984年   5篇
  1983年   4篇
  1982年   8篇
  1981年   11篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1977年   3篇
  1976年   6篇
  1975年   4篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1971年   4篇
  1970年   5篇
  1967年   2篇
排序方式: 共有341条查询结果,搜索用时 9 毫秒
21.
22.
23.
MEK wars, a new front in the battle against cancer.   总被引:1,自引:0,他引:1  
  相似文献   
24.
Productively infected bovine fibropapillomas were examined for bovine papillomavirus type 1 (BPV-1) E7 localization. BPV-1 E7 was observed in the cytoplasm of basal and lower spinous epithelial cells, coexpressed in the cytoplasm of basal cells with the E5 oncoprotein. E7 was also observed in nucleoli throughout the basal and spinous layers but not in the granular cell layer. Ectopic expression of E7 in cultured epithelial cells gave rise to localization similar to that seen in productive fibropapillomas, with cytoplasmic and nucleolar expression observed. Consistent with the coexpression of E7 and E5 in basal keratinocytes, BPV-1 E7 cooperated with E5 as well as E6 in an anchorage independence transformation assay. While E5 is expressed in both basal and superficial differentiating keratinocytes, BPV-1 E7 is only observed in basal and lower spinous epithelial cells. Therefore, BPV-1 E7 may serve to modulate the cellular response of basal epithelial cells to E5 expression.  相似文献   
25.
26.
Papillomavirus E6 oncoproteins transform mammalian cells through interaction with cellular proteins. Bovine papillomavirus type 1 E6 (BE6) interacts with three previously described cellular targets: the E6AP E3 ubiquitin ligase, the calcium-binding protein E6BP (also known as ERC-55), and paxillin, which is a focal adhesion adapter protein. BE6 interacts strongly with each of these proteins in vitro, binding to similar peptide sequences found in E6AP, E6BP, and paxillin. To determine which BE6 interactions are necessary for transformation by BE6, we used a novel selection strategy for temperature-sensitive BE6 mutants in yeast that could discriminate in their interaction between E6AP, E6BP, and paxillin. All BE6 mutants that retained transforming ability retained association with paxillin, while some mutants that were transformation positive failed to interact with E6AP or E6BP. This study demonstrates that oncogene mutants that are temperature sensitive for transformation can be selected in yeast and that the induction of anchorage-independent cell proliferation by BE6 does not require strong association of BE6 with either E6AP or E6BP. Of particular interest is the identification of a BE6 mutant that interacts strongly with the acidic charged leucine motifs of E6AP, E6BP, and paxillin but is devoid of transformation activity, thereby genetically identifying a second essential transformation function in BE6 that is independent of interaction with acidic charged leucine motifs.  相似文献   
27.
The biomechanical model of glaucoma considers intraocular pressure-related stress and resultant strain on load bearing connective tissues of the optic nerve and surrounding peripapillary sclera as one major causative influence that effects cellular, vascular, and axonal components of the optic nerve. By this reasoning, the quantification of variations in the microstructural architecture and macromechanical response of scleral shells in glaucomatous compared to healthy populations provides an insight into any variations that exist between patient populations. While scleral shells have been tested mechanically in planar and pressure-inflation scenarios the link between the macroscopic biomechanical response and the underlying microstructure has not been determined to date. A potential roadblock to determining how the microstructure changes based on pressure is the ability to mount the spherical scleral shells in a method that does not induce unwanted stresses to the samples (for instance, in the flattening of the spherical specimens), and then capturing macroscopic and microscopic changes under pressure. Often what is done is a macroscopic test followed by sample fixation and then imaging to determine microstructural organization. We introduce a novel device and method, which allows spherical samples to be pressurized and macroscopic and microstructural behavior quantified on fully hydrated ocular specimens. The samples are pressurized and a series of markers on the surface of the sclera imaged from several different perspectives and reconstructed between pressure points to allow for mapping of nonhomogenous strain. Pictures are taken from different perspectives through the use of mounting the pressurization scheme in a gimbal that allows for positioning the sample in several different spherical coordinate system configurations. This ability to move the sclera in space about the center of the globe, coupled with an upright multiphoton microscope, allows for collecting collagen, and elastin signal in a rapid automated fashion so the entire globe can be imaged.  相似文献   
28.
Efficiency of correct nucleotide insertion governs DNA polymerase fidelity   总被引:1,自引:0,他引:1  
DNA polymerase fidelity or specificity expresses the ability of a polymerase to select a correct nucleoside triphosphate (dNTP) from a pool of structurally similar molecules. Fidelity is quantified from the ratio of specificity constants (catalytic efficiencies) for alternate substrates (i.e. correct and incorrect dNTPs). An analysis of the efficiency of dNTP (correct and incorrect) insertion for a low fidelity mutant of DNA polymerase beta (R283A) and exonuclease-deficient DNA polymerases from five families derived from a variety of biological sources reveals that a strong correlation exists between the ability to synthesize DNA and the probability that the polymerase will make a mistake (i.e. base substitution error). Unexpectedly, this analysis indicates that the difference between low and high fidelity DNA polymerases is related to the efficiency of correct, but not incorrect, nucleotide insertion. In contrast to the loss of fidelity observed with the catalytically inefficient R283A mutant, the fidelity of another inefficient mutant of DNA polymerase beta (G274P) is not altered. Thus, although all natural low fidelity DNA polymerases are inefficient, not every inefficient DNA polymerase has low fidelity. Low fidelity polymerases appear to be an evolutionary solution to how to replicate damaged DNA or DNA repair intermediates without burdening the genome with excessive polymerase-initiated errors.  相似文献   
29.
30.

Background

Vitamin D is associated with lung function in cross-sectional studies, and vitamin D inadequacy is hypothesized to play a role in the pathogenesis of chronic obstructive pulmonary disease. Further data are needed to clarify the relation between vitamin D status, genetic variation in vitamin D metabolic genes, and cross-sectional and longitudinal changes in lung function in healthy adults.

Methods

We estimated the association between serum 25-hydroxyvitamin D [25(OH)D] and cross-sectional forced expiratory volume in the first second (FEV1) in Framingham Heart Study (FHS) Offspring and Third Generation participants and the association between serum 25(OH)D and longitudinal change in FEV1 in Third Generation participants using linear mixed-effects models. Using a gene-based approach, we investigated the association between 241 SNPs in 6 select vitamin D metabolic genes in relation to longitudinal change in FEV1 in Offspring participants and pursued replication of these findings in a meta-analyzed set of 4 independent cohorts.

Results

We found a positive cross-sectional association between 25(OH)D and FEV1 in FHS Offspring and Third Generation participants (P = 0.004). There was little or no association between 25(OH)D and longitudinal change in FEV1 in Third Generation participants (P = 0.97). In Offspring participants, the CYP2R1 gene, hypothesized to influence usual serum 25(OH)D status, was associated with longitudinal change in FEV1 (gene-based P < 0.05). The most significantly associated SNP from CYP2R1 had a consistent direction of association with FEV1 in the meta-analyzed set of replication cohorts, but the association did not reach statistical significance thresholds (P = 0.09).

Conclusions

Serum 25(OH)D status was associated with cross-sectional FEV1, but not longitudinal change in FEV1. The inconsistent associations may be driven by differences in the groups studied. CYP2R1 demonstrated a gene-based association with longitudinal change in FEV1 and is a promising candidate gene for further studies.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0238-y) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号