首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   447篇
  免费   32篇
  2022年   4篇
  2021年   14篇
  2020年   7篇
  2019年   5篇
  2018年   8篇
  2017年   7篇
  2016年   10篇
  2015年   25篇
  2014年   25篇
  2013年   28篇
  2012年   27篇
  2011年   28篇
  2010年   19篇
  2009年   18篇
  2008年   19篇
  2007年   12篇
  2006年   28篇
  2005年   21篇
  2004年   11篇
  2003年   20篇
  2002年   15篇
  2001年   9篇
  2000年   15篇
  1999年   12篇
  1998年   6篇
  1997年   5篇
  1996年   4篇
  1995年   5篇
  1994年   4篇
  1992年   11篇
  1991年   5篇
  1990年   5篇
  1989年   5篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   7篇
  1984年   4篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   4篇
  1978年   1篇
  1977年   3篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1966年   1篇
排序方式: 共有479条查询结果,搜索用时 31 毫秒
61.
The presence of transforming growth factor β1 (TGF-β1) for 24 or 48 h stimulated DNA synthesis, the percentage of cells in the S + G2/M phases of the cell cycle, and cell number, as compared to quiescent cells. The mitogenic capacity of TGF-β1 (1 pM) was similar to that shown by 10% fetal calf serum (FCS). TGF-β1 for 48 h increased by 5-fold the percentage of cells containing (3H)thymidine-labeled nuclei as compared to quiescent cells. In addition, single fetal brown adipocytes, showing their typical multilocular fat droplets phenotype, become positive for (3H)thymidine-labeled nuclei in response to TGF-β1. Moreover, TGF-β1 induced the mRNA expression of a complete set of proliferation-related genes, such as c-fos (30 min), c-myc and β-actin (2 h), and H-ras, cdc2 kinase, and glucose 6-phosphate dehydrogenase (G6PD) at 4 and 8 h, as compared to quiescent cells. Concurrently, TGF-β1 for 12 h increased the protein content of proliferating cellular nuclear antigen (PCNA) by 6-fold and p21-ras by 2-fold. Although our results demonstrate that TGF-β1 induces the expression of very early genes related to cell proliferation, TGF-β1 could be acting either as a mitogen or as a survival factor to induce proliferation in fetal brown adipocytes. © 1996 Wiley-Liss, Inc.  相似文献   
62.
The aim of this study was to unravel the relative role played by speleogenesis (i.e., the process in which a cave is formed), landscape‐scale variables, and geophysical factors in the determination of species richness in caves. Biological inventories from 21 caves located in the southeastern Iberian Peninsula along with partial least square (PLS) regression analysis were used to assess the relative importance of the different explanatory variables. The caves were grouped according to the similarity in their species composition; the effect that spatial distance could have on similarity was also studied using correlation between matrices. The energy and speleogenesis of caves accounted for 44.3% of the variation in species richness. The trophic level of each cave was the most significant factor in PLS regression analysis, and epigenic caves (i.e., those formed by the action of percolating water) had significantly more species than hypogenic ones (i.e., those formed by the action of upward flows in confined aquifers). Dissimilarity among the caves was very high (multiple‐site βsim = 0.92). Two main groups of caves were revealed through the cluster analysis, one formed by the western caves and the other by the eastern ones. The significant—but low—correlation found between faunistic dissimilarity and geographical distance (= .16) disappeared once the caves were split into the two groups. The extreme beta‐diversity suggests a very low connection among the caves and/or a very low dispersal capacity of the species. In the region under study, two main factors are intimately related to the richness of terrestrial subterranean species in caves: the amount of organic material (trophic level) and the formation process (genesis). This is the first time that the history of a cave genesis has been quantitatively considered to assess its importance in explaining richness patterns in comparison with other factors more widely recognized.  相似文献   
63.
64.
In Western Europe, many pond owners introduce amphibians for ornamental purposes. Although indigenous amphibians are legally protected in most European countries, retailers are circumventing national and international legislation by selling exotic nonprotected sibling species. We investigated to what extent non‐native species of the European water frog complex (genus Pelophylax) have become established in Belgium, using morphological, mitochondrial and nuclear genetic markers. A survey of 87 sampling sites showed the presence of non‐native water frogs at 47 locations, mostly Marsh frogs (Pelophylax ridibundus). Surprisingly, at least 19% of all these locations also harboured individuals with mitochondrial haplotypes characteristic of Anatolian water frogs (Pelophylax cf. bedriagae). Nuclear genotyping indicated widespread hybridization and introgression between P. ridibundus and P. cf. bedriagae. In addition, water frogs of Turkish origin obtained through a licensed retailer, also contained P. ridibundus and P. cf. bedriagae, with identical haplotypes to the wild Belgian populations. Although P. ridibundus might have invaded Belgium by natural range expansion from neighbouring countries, our results suggest that its invasion was at least partly enhanced by commercial trade, with origins as far as the Middle East. Also the invasion and rapid spread of Anatolian lineages, masked by their high morphological similarity to P. ridibundus, is likely the result of unregulated commercial trade. We expect that Anatolian frogs will further invade the exotic as well as the native range of P. ridibundus and other Pelophylax species elsewhere in Western and Central Europe, with risks of large‐scale hybridization and introgression.  相似文献   
65.
66.
We have analysed the growth and symbiotic performance of actinorhizal Discaria trinervis at various Ca supply regimes. We aimed at discriminating between specific, if any, effects on nodulation and general growth stimulation by Ca. The hypothesis that a high Ca supply would interfere with nodulation by Frankia was also tested. Results showed that plant growth increased with Ca supply. Nodulation was stimulated by moderate levels of Ca, but inhibited by Ca higher than 0.77 mM. Growth of nodules was less affected by Ca than shoot and root growth. Ca concentration of symbiotic plants increased with Ca supply, but nitrogen concentration was independent of Ca at concentrations which did not impair plant growth. All together, these results show that Ca has a positive effect on the establishment and functioning of the symbiosis between Discaria trinervis and Frankia. However, the positive influence of Ca was more likely due to a promotion of plant growth rather than a direct effect on nodule growth and nitrogen fixation itself. At high levels of Ca supply nodulation was impaired. Given the intercellular infection pathway in Discaria trinervis, we suggest that the increment of Ca availability would strengthen its root cell walls, thus decreasing Frankia penetration of the root.  相似文献   
67.
The design of protein–peptide interactions has a wide array of practical applications and also reveals insight into the basis for molecular recognition. Here, we present the redesign of a tetratricopeptide repeat (TPR) protein scaffold, along with its corresponding peptide ligand. We show that the binding properties of these protein–peptide pairs can be understood, quantitatively, using straightforward chemical considerations. The recognition pairs we have developed are also practically useful for the specific identification of tagged proteins. We demonstrate the facile replacement of these proteins, which we have termed T‐Mods (TPR‐based recognition module), for antibodies in both detection and purification applications. The new protein–peptide pair has a dissociation constant that is weaker than typical antibody–antigen interactions, yet the recognition pair is highly specific and we have shown that this affinity is sufficient for both Western blotting and affinity purification. Moreover, we demonstrate that this more moderate affinity is actually advantageous for purification applications, because extremely harsh conditions are not required to dissociate the T‐Mod‐peptide interaction. The results we present are important, not only because they represent a successful application of protein design but also because they help define the properties that should be sought in other scaffolds that are being developed as antibody replacements.  相似文献   
68.
69.
70.
Randomly amplified polymorphic DNA (RAPD) analysis was used to investigate the diversity of 179 bean isolates recovered from six field sites in the Arcos de Valdevez region of northwestern Portugal. The isolates were divided into 6 groups based on the fingerprint patterns that were obtained. Representatives for each group were selected for sequence analysis of 4 chromosomal DNA regions. Five of the groups were placed within Rhizobium lusitanum, and the other group was placed within R. tropici type IIA. Therefore, the collection of Portuguese bean isolates was shown to include the two species R. lusitanum and R. tropici. In plant tests, the strains P1-7, P1-1, P1-2, and P1-16 of R. lusitanum nodulated and formed nitrogen-fixing symbioses both with Phaseolus vulgaris and Leucaena leucocephala. A methyltransferase-encoding nodS gene identical with the R. tropici locus that confers wide host range was detected in the strain P1-7 as well as 24 others identified as R. lusitanum. A methyltransferase-encoding nodS gene also was detected in the remaining isolates of R. lusitanum, but in this case the locus was that identified with the narrow-host-range R. etli. Representatives of isolates with the nodS of R. etli formed effective nitrogen-fixing symbioses with P. vulgaris and did not nodulate L. leucocephala. From sequence data of nodS, the R. lusitanum genes for symbiosis were placed within those of either R. tropici or R. etli. These results would support the suggestion that R. lusitanum was the recipient of the genes for symbiosis with beans from both R. tropici and R. etli.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号