首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   300篇
  免费   28篇
  328篇
  2021年   2篇
  2019年   5篇
  2018年   4篇
  2017年   3篇
  2016年   14篇
  2015年   9篇
  2014年   12篇
  2013年   19篇
  2012年   17篇
  2011年   23篇
  2010年   22篇
  2009年   13篇
  2008年   19篇
  2007年   18篇
  2006年   16篇
  2005年   14篇
  2004年   8篇
  2003年   10篇
  2002年   9篇
  2001年   7篇
  2000年   10篇
  1999年   7篇
  1997年   2篇
  1995年   5篇
  1992年   3篇
  1991年   2篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1983年   3篇
  1979年   3篇
  1977年   2篇
  1976年   4篇
  1974年   1篇
  1973年   2篇
  1972年   3篇
  1971年   2篇
  1970年   3篇
  1966年   1篇
  1965年   1篇
  1964年   1篇
  1963年   2篇
  1962年   1篇
  1961年   2篇
  1960年   1篇
  1948年   1篇
  1938年   1篇
  1932年   2篇
  1931年   1篇
  1913年   1篇
排序方式: 共有328条查询结果,搜索用时 15 毫秒
91.
External polysaccharides of many pathogenic bacteria form capsules protecting the bacteria from the animal immune system and phage infection. However, some bacteriophages can digest these capsules using glycosidases displayed on the phage particle. We have utilized cryo-electron microscopy to determine the structures of phages K1E and K1-5 and thereby establish the mechanism by which these phages attain and switch their host specificity. Using a specific glycosidase, both phages penetrate the capsule and infect the neuroinvasive human pathogen Escherichia coli K1. In addition to the K1-specific glycosidase, each K1-5 particle carries a second enzyme that allows it to infect E. coli K5, whose capsule is chemically different from that of K1. The enzymes are organized into a multiprotein complex attached via an adapter protein to the virus portal vertex, through which the DNA is ejected during infection. The structure of the complex suggests a mechanism for the apparent processivity of degradation that occurs as the phage drills through the polysaccharide capsule. The enzymes recognize the adapter protein by a conserved N-terminal sequence, providing a mechanism for phages to acquire different enzymes and thus to evolve new host specificities.  相似文献   
92.
With the exception of human immunodeficiency virus (HIV), which emerged in humans after cross-species transmissions of simian immunodeficiency viruses from nonhuman primates, immunodeficiency viruses of the family Lentiviridae represent species-specific viruses that rarely cross species barriers to infect new hosts. Among the Felidae, numerous immunodeficiency-like lentiviruses have been documented, but only a few cross-species transmissions have been recorded, and these have not been perpetuated in the recipient species. Lentivirus seroprevalence was determined for 79 bobcats (Lynx rufus) and 31 pumas (Puma concolor) from well-defined populations in Southern California. Partial genomic sequences were subsequently obtained from 18 and 12 seropositive bobcats and pumas, respectively. Genotypes were analyzed for phylogenic relatedness and genotypic composition among the study set and archived feline lentivirus sequences. This investigation of feline immunodeficiency virus infection in bobcats and pumas of Southern California provides evidence that cross-species infection has occurred frequently among these animals. The data suggest that transmission has occurred in multiple locations and are most consistent with the spread of the virus from bobcats to pumas. Although the ultimate causes remain unknown, these transmission events may occur as a result of puma predation on bobcats, a situation similar to that which fostered transmission of HIV to humans, and likely represent the emergence of a lentivirus with relaxed barriers to cross-species transmission. This unusual observation provides a valuable opportunity to evaluate the ecological, behavioral, and molecular conditions that favor repeated transmissions and persistence of lentivirus between species.  相似文献   
93.
A series of conformationally restricted bis-azaaromatic quaternary ammonium salts (3 and 4) have been designed and synthesized in order to investigate the possible binding conformations of N,N′-dodecane-1,12-diyl-bis-3-picolinium dibromide (bPiDDB; 2), a compound which potently inhibits neuronal nicotinic acetylcholine receptors (nAChRs) mediating nicotine-evoked dopamine release. The preliminary structure–activity relationships of these new analogues suggest that bPiDDB binds in an extended conformation at the nAChR binding site, and that flexibility of the linker may be important for its high potency in inhibiting nAChRs mediating nicotine-evoked dopamine release.  相似文献   
94.
JY Ho  NJ Cira  JA Crooks  J Baeza  DB Weibel 《PloS one》2012,7(7):e41245
This article describes Bacteria ID Chips ('BacChips'): an inexpensive, portable, and autonomous microfluidic platform for identifying pathogenic strains of bacteria. BacChips consist of a set of microchambers and channels molded in the elastomeric polymer, poly(dimethylsiloxane) (PDMS). Each microchamber is preloaded with mono-, di-, or trisaccharides and dried. Pressing the layer of PDMS into contact with a glass coverslip forms the device; the footprint of the device in this article is ~6 cm(2). After assembly, BacChips are degased under large negative pressure and are stored in vacuum-sealed plastic bags. To use the device, the bag is opened, a sample containing bacteria is introduced at the inlet of the device, and the degased PDMS draws the sample into the central channel and chambers. After the liquid at the inlet is consumed, air is drawn into the BacChip via the inlet and provides a physical barrier that separates the liquid samples in adjacent microchambers. A pH indicator is admixed with the samples prior to their loading, enabling the metabolism of the dissolved saccharides in the microchambers to be visualized. Importantly, BacChips operate without external equipment or instruments. By visually detecting the growth of bacteria using ambient light after ~4 h, we demonstrate that BacChips with ten microchambers containing different saccharides can reproducibly detect the ESKAPE panel of pathogens, including strains of: Enterococcus faecalis, Enteroccocus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter aerogenes, and Enterobacter cloacae. This article describes a BacChip for point-of-care detection of ESKAPE pathogens and a starting point for designing multiplexed assays that identify bacterial strains from clinical samples and simultaneously determine their susceptibility to antibiotics.  相似文献   
95.
96.
Settlements near the Semipalatinsk Test Site (SNTS) in northeastern Kazakhstan were exposed to radioactive fallout during 1949-1962. Thyroid disease prevalence among 2994 residents of eight villages was ascertained by ultrasound screening. Malignancy was determined by cytopathology. Individual thyroid doses from external and internal radiation sources were reconstructed from fallout deposition patterns, residential histories and diet, including childhood milk consumption. Point estimates of individual external and internal dose averaged 0.04 Gy (range 0-0.65) and 0.31 Gy (0-9.6), respectively, with a Pearson correlation coefficient of 0.46. Ultrasound-detected thyroid nodule prevalence was 18% and 39% among males and females, respectively. It was significantly and independently associated with both external and internal dose, the main study finding. The estimated relative biological effectiveness of internal compared to external radiation dose was 0.33, with 95% confidence bounds of 0.09-3.11. Prevalence of papillary cancer was 0.9% and was not significantly associated with radiation dose. In terms of excess relative risk per unit dose, our dose-response findings for nodule prevalence are comparable to those from populations exposed to medical X rays and to acute radiation from the Hiroshima and Nagasaki atomic bombings.  相似文献   
97.
Bacteriophage N4 encapsidates a 3500-aa-long DNA-dependent RNA polymerase (vRNAP), which is injected into the host along with the N4 genome upon infection. The three-dimensional structures of wild-type and mutant N4 viruses lacking gp17, gp50, or gp65 were determined by cryoelectron microscopy. The virion has an icosahedral capsid with T = 9 quasi-symmetry that encapsidates well-organized double-stranded DNA and vRNAP. The tail, attached at a unique pentameric vertex of the head, consists of a neck, 12 appendages, and six ribbons that constitute a non-contractile sheath around a central tail tube. Comparison of wild-type and mutant virus structures in conjunction with bioinformatics established the identity and virion locations of the major capsid protein (gp56), a decorating protein (gp17), the vRNAP (gp50), the tail sheath (gp65), the appendages (gp66), and the portal protein (gp59). The N4 virion organization provides insight into its assembly and suggests a mechanism for genome and vRNAP transport strategies utilized by this unique system.  相似文献   
98.
A series of lobelane homologues has been synthesized and evaluated for their [(3)H]DTBZ binding affinity at the vesicular monoamine transporter-2 (VMAT2). The structure-activity relationships (SAR) indicate that for retention of binding affinity at VMAT2, the lengths of the methylene linkers should be no shorter than one methylene unit at C-6 of the piperidine ring, and no shorter than two methylene units at C-2 of the piperidine ring. These results indicate that the intramolecular distances between the piperidine ring and two phenyl rings in lobelane analogues are an important criterion for retention of high affinity at VMAT2.  相似文献   
99.
100.
Plant invasions of coastal wetlands are rapidly changing the structure and function of these systems globally. Alteration of litter dynamics represents one of the fundamental impacts of an invasive plant on salt marsh ecosystems. Tamarisk species (Tamarix spp.), which extensively invade terrestrial and riparian habitats, have been demonstrated to enter food webs in these ecosystems. However, the trophic impacts of the relatively new invasion of tamarisk into marine ecosystem have not been assessed. We evaluated the trophic consequences of invasion by tamarisk for detrital food chains in the Tijuana River National Estuarine Research Reserve salt marsh using litter dynamics techniques and stable isotope enrichment experiments. The observations of a short residence time for tamarisk combined with relatively low C:N values indicate that tamarisk is a relatively available and labile food source. With an isotopic (15N) enrichment of tamarisk, we demonstrated that numerous macroinvertebrate taxonomic and trophic groups, both within and on the sediment, utilized 15N derived from labeled tamarisk detritus. Infaunal invertebrate species that took up no or limited 15N from labeled tamarisk (A. californica, enchytraeid oligochaetes, coleoptera larvae) occurred in lower abundance in the tamarisk-invaded environment. In contrast, species that utilized significant 15N from the labeled tamarisk, such as psychodid insects, an exotic amphipod, and an oniscid isopod, either did not change or occurred in higher abundance. Our research supports the hypothesis that invasive species can alter the trophic structure of an environment through addition of detritus and can also potentially impact higher trophic levels by shifting dominance within the invertebrate community to species not widely consumed. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号