首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   20篇
  149篇
  2023年   2篇
  2022年   3篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2017年   4篇
  2016年   5篇
  2015年   6篇
  2014年   6篇
  2013年   6篇
  2012年   12篇
  2011年   8篇
  2010年   11篇
  2009年   5篇
  2008年   8篇
  2007年   4篇
  2006年   5篇
  2005年   5篇
  2004年   3篇
  2003年   9篇
  2002年   3篇
  2001年   2篇
  1999年   4篇
  1998年   7篇
  1997年   6篇
  1996年   1篇
  1995年   2篇
  1994年   4篇
  1993年   1篇
  1986年   1篇
  1985年   1篇
  1979年   1篇
  1955年   1篇
  1941年   1篇
  1937年   2篇
  1930年   1篇
  1927年   1篇
  1919年   2篇
排序方式: 共有149条查询结果,搜索用时 15 毫秒
91.
An approach to coordinated, spatially resolved, in situ carbon isotope analysis of organic matter and carbonate minerals, and sulfur three‐ and four‐isotope analysis of pyrite with an unprecedented combination of spatial resolution, precision, and accuracy is described. Organic matter and pyrite from eleven rock samples of Neoarchean drill core express nearly the entire range of δ13C, δ34S, Δ33S, and Δ36S known from the geologic record, commonly in correlation with morphology, mineralogy, and elemental composition. A new analytical approach (including a set of organic calibration standards) to account for a strong correlation between H/C and instrumental bias in SIMS δ13C measurement of organic matter is identified. Small (2–3 μm) organic domains in carbonate matrices are analyzed with sub‐permil accuracy and precision. Separate 20‐ to 50‐μm domains of kerogen in a single ~0.5 cm3 sample of the ~2.7 Ga Tumbiana Formation have δ13C = ?52.3 ± 0.1‰ and ?34.4 ± 0.1‰, likely preserving distinct signatures of methanotrophy and photoautotrophy. Pyrobitumen in the ~2.6 Ga Jeerinah Formation and the ~2.5 Ga Mount McRae Shale is systematically 13C‐enriched relative to co‐occurring kerogen, and associations with uraniferous mineral grains suggest radiolytic alteration. A large range in sulfur isotopic compositions (including higher Δ33S and more extreme spatial gradients in Δ33S and Δ36S than any previously reported) are observed in correlation with morphology and associated mineralogy. Changing systematics of δ34S, Δ33S, and Δ36S, previously investigated at the millimeter to centimeter scale using bulk analysis, are shown to occur at the micrometer scale of individual pyrite grains. These results support the emerging view that the dampened signature of mass‐independent sulfur isotope fractionation (S‐MIF) associated with the Mesoarchean continued into the early Neoarchean, and that the connections between methane and sulfur metabolism affected the production and preservation of S‐MIF during the first half of the planet's history.  相似文献   
92.
Analysis of formalin-fixed paraffin-embedded (FFPE) tissue by immunohistochemistry (IHC) is commonplace in clinical and research laboratories. However, reports suggest that IHC results can be compromised by biospecimen preanalytical factors. The National Cancer Institute’s Biospecimen Preanalytical Variables Program conducted a systematic study to examine the potential effects of delay to fixation (DTF) and time in fixative (TIF) on IHC using 24 cancer biomarkers. Differences in IHC staining, relative to controls with a DTF of 1 hr, were observed in FFPE kidney tumor specimens after a DTF of ≥2 hr. Reductions in H-score and/or staining intensity were observed for c-MET, p53, PAX2, PAX8, pAKT, and survivin, whereas increases were observed for RCC1, EGFR, and CD10. Prolonged TIF of 72 hr resulted in significantly reduced H-scores of CD44 and c-Met in kidney tumor specimens, compared with controls with 12-hr TIF. An elevated probability of altered staining intensity due to DTF was observed for nine antigens, whereas for prolonged TIF an elevated probability was observed for one antigen. Results reported here and elsewhere across tumor types and antigens support limiting DTF to ≤1 hr when possible and fixing tissues in formalin for 12–24 hr to avoid confounding effects of these preanalytical factors on IHC.  相似文献   
93.
94.
AK Lewis  CC Valley  JN Sachs 《Biochemistry》2012,51(33):6545-6555
The widely accepted model for tumor necrosis factor 1 (TNFR1) signaling is that ligand binding causes receptor trimerization, which triggers a reorganization of cytosolic domains and thus initiates intracellular signaling. This model of stoichiometrically driven receptor activation does not account for the occurrence of ligand independent signaling in overexpressed systems, nor does it explain the constitutive activity of the R92Q mutant associated with TRAPS. More recently, ligand binding has been shown to result in the formation of high molecular weight, oligomeric networks. Although the dimer, shown to be the preligand structure, is thought to remain present within ligand-receptor networks, it is unknown whether network formation or ligand-induced structural change to the dimer itself is the trigger for TNFR1 signaling. In the present study, we investigate the available crystal structures of TNFR1 to explore backbone dynamics and infer conformational transitions associated with ligand binding. Using normal-mode analysis, we characterize the dynamic coupling between the TNFR1 ligand binding and membrane proximal domains and suggest a mechanism for ligand-induced activation. Furthermore, our data are supported experimentally by FRET showing that the constitutively active R92Q mutant adopts an altered conformation compared to wild-type. Collectively, our results suggest that the signaling competent architecture is the receptor dimer and that ligand binding modifies domain mobilities intrinsic to the receptor structure, allowing it to sample a separate, active conformation mediated by network formation.  相似文献   
95.
Mutations within the epidermal growth factor receptor (EGFR/erbB1/Her1) are often associated with tumorigenesis. In particular, a number of EGFR mutants that demonstrate ligand-independent signaling are common in non–small cell lung cancer (NSCLC), including kinase domain mutations L858R (also called L834R) and exon 19 deletions (e.g., ΔL747-P753insS), which collectively make up nearly 90% of mutations in NSCLC. The molecular mechanisms by which these mutations confer constitutive activity remain unresolved. Using multiple subdiffraction-limit imaging modalities, we reveal the altered receptor structure and interaction kinetics of NSCLC-associated EGFR mutants. We applied two-color single quantum dot tracking to quantify receptor dimerization kinetics on living cells and show that, in contrast to wild-type EGFR, mutants are capable of forming stable, ligand-independent dimers. Two-color superresolution localization microscopy confirmed ligand-independent aggregation of EGFR mutants. Live-cell Förster resonance energy transfer measurements revealed that the L858R kinase mutation alters ectodomain structure such that unliganded mutant EGFR adopts an extended, dimerization-competent conformation. Finally, mutation of the putative dimerization arm confirmed a critical role for ectodomain engagement in ligand-independent signaling. These data support a model in which dysregulated activity of NSCLC-associated kinase mutants is driven by coordinated interactions involving both the kinase and extracellular domains that lead to enhanced dimerization.  相似文献   
96.
We constructed monocopy lac operon control regions in which the operators O1-lac and O3-lac were replaced by NarL and NarP binding sites from the nirB or napF operon control regions. The results support the hypothesis that DNA-bound dimers of phospho-NarL can participate in higher-order cooperative interactions.  相似文献   
97.
We developed a geochemical atlas of the Colorado River in Grand Canyon and in its tributary, the Little Colorado River, and used it to identify provenance and habitat use by Federally Endangered humpback chub, Gila cypha.  Carbon stable isotope ratios (δ13C) discriminate best between the two rivers, but fine scale analysis in otoliths requires rare, expensive instrumentation. We therefore correlated other tracers (SrSr, Ba, and Se in ratio to Ca) to δ13C that are easier to quantify in otoliths with other microchemical techniques. Although the Little Colorado River’s water chemistry varies with major storm events, at base flow or near base flow (conditions occurring 84% of the time in our study) its chemistry differs sufficiently from the mainstem to discriminate one from the other. Additionally, when fish egress from the natal Little Colorado River to the mainstem, they encounter cold water which causes the otolith daily growth increments to decrease in size markedly. Combining otolith growth increment analysis and microchemistry permitted estimation of size and age at first egress; size at first birthday was also estimated. Emigrants < 1 year old averaged 51.2 ± 4.4 (SE) days and 35.5 ± 3.6 mm at egress; older fish that had recruited to the population averaged 100 ± 7.8 days old and 51.0 ± 2.2 mm at egress, suggesting that larger, older emigrants recruit better. Back-calculated size at age 1 was unimodal and large (78.2 ± 3.3 mm) in Little Colorado caught fish but was bimodally distributed in Colorado mainstem caught fish (49.9 ± 3.6 and 79 ± 4.9 mm) suggesting that humpback chub can also rear in the mainstem. The study demonstrates the coupled usage of the two rivers by this fish and highlights the need to consider both rivers when making management decisions for humpback chub recovery.  相似文献   
98.
99.
Evolution of arthropod hemocyanins and insect storage proteins (hexamerins)   总被引:4,自引:2,他引:4  
Crustacean and cheliceratan hemocyanins (oxygen-transport proteins) and insect hexamerins (storage proteins) are homologous gene products, although the latter do not bind oxygen and do not possess the copper- binding histidines present in the hemocyanins. An alignment of 19 amino acid sequences of hemocyanin subunits and insect hexamerins was made, based on the conservation of elements of secondary structure observed in X-ray structures of two hemocyanin subunits. The alignment was analyzed using parsimony and neighbor-joining methods. Results provide strong indications for grouping together the sequences of the 2 crustacean hemocyanin subunits, the 5 cheliceratan hemocyanin subunits, and the 12 insect hexamerins. Within the insect clade, four methionine- rich proteins, four arylphorins, and two juvenile hormone-suppressible proteins from Lepidoptera, as well as two dipteran proteins, form four separate groups. In the absence of an outgroup sequence, it is not possible to present information about the ancestral state from which these proteins are derived. Although this family of proteins clearly consists of homologous gene products, there remain striking differences in gene organization and site of biosynthesis of the proteins within the cell. Because studies on 18S and 12S rRNA sequences indicate a rather close relationship between insects and crustaceans, we propose that hemocyanin is the ancestral arthropod protein and that insect hexamerins lost their copper-binding capability after divergence of the insects from the crustaceans.   相似文献   
100.
Anaerobic cultures of Shewanella oneidensis MR-1 grown with nitrate as the sole electron acceptor exhibited sequential reduction of nitrate to nitrite and then to ammonium. Little dinitrogen and nitrous oxide were detected, and no growth occurred on nitrous oxide. A mutant with the napA gene encoding periplasmic nitrate reductase deleted could not respire or assimilate nitrate and did not express nitrate reductase activity, confirming that the NapA enzyme is the sole nitrate reductase. Hence, S. oneidensis MR-1 conducts respiratory nitrate ammonification, also termed dissimilatory nitrate reduction to ammonium, but not respiratory denitrification.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号