首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   20篇
  2023年   2篇
  2022年   3篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2017年   4篇
  2016年   5篇
  2015年   6篇
  2014年   6篇
  2013年   6篇
  2012年   12篇
  2011年   8篇
  2010年   11篇
  2009年   5篇
  2008年   8篇
  2007年   4篇
  2006年   5篇
  2005年   5篇
  2004年   3篇
  2003年   9篇
  2002年   3篇
  2001年   2篇
  1999年   4篇
  1998年   7篇
  1997年   6篇
  1996年   1篇
  1995年   2篇
  1994年   4篇
  1993年   1篇
  1986年   1篇
  1985年   1篇
  1979年   1篇
  1955年   1篇
  1941年   1篇
  1937年   2篇
  1930年   1篇
  1927年   1篇
  1919年   2篇
排序方式: 共有149条查询结果,搜索用时 578 毫秒
21.
22.
23.
Marmosets (genus Callithrix) are a diverse group of platyrrhine primates with 13-15 purported taxa, many of them considered endangered. Morphological analyses constitute most of the basis for recognition of these forms as distinct taxa. The purpose of this study was to provide a molecular view, based on mitochondrial control region sequences, of the evolutionary history of the marmosets, concomitant with a molecular phylogenetic perspective on species diversity within the group. An additional purpose was to provide the first comparative examination of a complete New World monkey control region sequence with those of other mammals. The phylogenetic analyses provide convincing support for a split between the Atlantic forest and Amazonian marmosets, with the inclusion of the pygmy marmoset (Cebuella pygmaea) at the base of the Amazonian clade. The earliest branch of the Atlantic forest group was C. aurita. In the Amazonian group, the analyses do not support the recognition of C. humeralifer and the recently described C mauesi as distinct taxa. They do, however, support a clear distinction between C. argentata and a strongly supported mixed clade of C. humeralifer and C. mauesi. In the Atlantic forest group, the phylogenetic tree suggests mixing between C. penicillata, C. kuhli, and possibly C. jacchus. Most of the sequence features characteristic of other mammal control regions were also evident in marmosets, with the exception that conserved sequence blocks (CSBs) 2 and 3 were not clearly identifiable. Tandem repeat units often associated with heteroplasmy in a variety of other mammals were not evident in the marmoset sequences.   相似文献   
24.
We examined the phylogenetic relationships among five heterothallic species of Neurospora using restriction fragment polymorphisms derived from cosmid probes and sequence data from the upstream regions of two genes, al-1 and frq. Distance, maximum likelihood, and parsimony trees derived from the data support the hypothesis that strains assigned to N. sitophila, N. discreta, and N. tetrasperma form respective monophyletic groups. Strains assigned to N. intermedia and N. crassa, however, did not form two respective monophyletic groups, consistent with a previous suggestion based on analysis of mitochondrial DNAs that N. crassa and N. intermedia may be incompletely resolved sister taxa. Trees derived from restriction fragments and the al-1 sequence position N. tetrasperma as the sister species of N. sitophila. None of the trees produced by our data supported a previous analysis of sequences in the region of the mating type idiomorph that grouped N. crassa and N. sitophila as sister taxa, as well as N. intermedia and N. tetrasperma as sister taxa. Moreover, sequences from al-1, frq, and the mating-type region produced different trees when analyzed separately. The lack of consensus obtained with different sequences could result from the sorting of ancestral polymorphism during speciation or gene flow across species boundaries, or both.  相似文献   
25.
Signal-responsive components of transmembrane signal-transducing regulatory systems include methyl-accepting chemotaxis proteins and membrane-bound, two-component histidine kinases. Prokaryotes use these regulatory networks to channel environmental cues into adaptive responses. A typical network is highly discriminating, using a specific phosphoryl relay that connects particular signals to appropriate responses. Current understanding of transmembrane signal transduction includes periplasmic signal binding with the subsequent conformational changes being transduced, via transmembrane helix movements, into the sensory protein's cytoplasmic domain. These induced conformational changes bias the protein's regulatory function. Although the mutational analyses reviewed here identify a role for the linker region in transmembrane signal transduction, no specific mechanism of linker function has yet been described. We propose a speculative, mechanistic model for linker function based on interactions between two putative amphipathic helices. The model attempts to explain both mutant phenotypes and hybrid sensor data, while accounting for recognized features of amphipathic helices.  相似文献   
26.
BackgroundHealthcare systems in dengue-endemic countries are often overburdened due to the high number of patients hospitalized according to dengue management guidelines. We systematically evaluated clinical outcomes in a large cohort of patients hospitalized with acute dengue to support triaging of patients to ambulatory versus inpatient management in the future.Methods/Principal findingsFrom June 2017- December 2018, we conducted surveillance among children and adults with fever within the prior 7 days who were hospitalized at the largest tertiary-care (1,800 bed) hospital in the Southern Province, Sri Lanka. Patients who developed platelet count ≤100,000/μL (threshold for hospital admission in Sri Lanka) and who met at least two clinical criteria consistent with dengue were eligible for enrollment. We confirmed acute dengue by testing sera collected at enrollment for dengue NS1 antigen or IgM antibodies. We defined primary outcomes as per the 1997 and 2009 World Health Organization (WHO) classification criteria: dengue hemorrhagic fever (DHF; WHO 1997), dengue shock syndrome (DSS; WHO 1997), and severe dengue (WHO 2009). Overall, 1064 patients were confirmed as having acute dengue: 318 (17.4%) by NS1 rapid antigen testing and 746 (40.7%) by IgM antibody testing. Of these 1064 patients, 994 (93.4%) were adults ≥18 years and 704 (66.2%) were male. The majority (56, 80%) of children and more than half of adults (544, 54.7%) developed DHF during hospitalization, while 6 (8.6%) children and 22 (2.2%) adults developed DSS. Overall, 10 (14.3%) children and 113 (11.4%) adults developed severe dengue. A total of 2 (0.2%) patients died during hospitalization.ConclusionsOne-half of patients hospitalized with acute dengue progressed to develop DHF and a very small number developed DSS or severe dengue. Developing an algorithm for triaging patients to ambulatory versus inpatient management should be the future goal to optimize utilization of healthcare resources in dengue-endemic countries.  相似文献   
27.
The invasive freshwater snail Tarebia granifera (Lamarck, 1822) was first reported in South Africa in 1999 and it has become widespread across the country, with some evidence to suggest that it reduces benthic macroinvertebrate biodiversity. The current study aimed to identify the primary abiotic drivers behind abundance patterns of T. granifera, by comparing the current abundance of the snail in three different regions, and at three depths, of the highly modified Nseleni River in KwaZulu-Natal, South Africa. Tarebia granifera was well established throughout the Nseleni River system, with an overall preference for shallow waters and seasonal temporal patterns of abundance. Although it is uncertain what the ecological impacts of the snail in this system are, its high abundances suggest that it should be controlled where possible and prevented from invading other systems in the region.  相似文献   
28.
The enterobacterium Klebsiella oxytoca uses a variety of inorganic and organic nitrogen sources, including purines, nitrogen-rich compounds that are widespread in the biosphere. We have identified a 23-gene cluster that encodes the enzymes for utilizing purines as the sole nitrogen source. Growth and complementation tests with insertion mutants, combined with sequence comparisons, reveal functions for the products of these genes. Here, we report our characterization of 12 genes, one encoding guanine deaminase and the others encoding enzymes for converting (hypo)xanthine to allantoate. Conventionally, xanthine dehydrogenase, a broadly distributed molybdoflavoenzyme, catalyzes sequential hydroxylation reactions to convert hypoxanthine via xanthine to urate. Our results show that these reactions in K. oxytoca are catalyzed by a two-component oxygenase (HpxE-HpxD enzyme) homologous to Rieske nonheme iron aromatic-ring-hydroxylating systems, such as phthalate dioxygenase. Our results also reveal previously undescribed enzymes involved in urate oxidation to allantoin, catalyzed by a flavoprotein monooxygenase (HpxO enzyme), and in allantoin conversion to allantoate, which involves allantoin racemase (HpxA enzyme). The pathway also includes the recently described PuuE allantoinase (HpxB enzyme). The HpxE-HpxD and HpxO enzymes were discovered independently by de la Riva et al. (L. de la Riva, J. Badia, J. Aguilar, R. A. Bender, and L. Baldoma, J. Bacteriol. 190:7892-7903, 2008). Thus, several enzymes in this K. oxytoca purine utilization pathway differ from those in other microorganisms. Isofunctional homologs of these enzymes apparently are encoded by other species, including Acinetobacter, Burkholderia, Pseudomonas, Saccharomyces, and Xanthomonas.Purines and purine derivatives comprise a large portion of biomass and are involved in almost every step of life. Not only a major constituent of nucleic acids, they also are central to energy transfer and storage (ATP) as well as protein synthesis and signaling (GTP). Plants, animals, and many microorganisms use purines and purine derivatives to store and translocate nitrogen for assimilation or excretion (96).Salvage pathways operate to recycle purines, including hypoxanthine and xanthine, back into nucleoside pools (107). Additionally, some organisms can utilize purines as the sole source of nitrogen and carbon. Adenine and guanine are deaminated to form hypoxanthine and xanthine, respectively, which then are oxidized to form uric acid (urate at physiological pH) (Fig. (Fig.1).1). These oxidation steps are catalyzed by xanthine dehydrogenase, a well-studied molybdoflavoenzyme that is conserved from bacteria to humans (51). Two sequential ring-opening steps convert urate via allantoin to allantoate (Fig. (Fig.1).1). Subsequent steps, which comprise different pathways in different microorganisms (96), convert allantoate to ammonium, which is assimilated.Open in a separate windowFIG. 1.Purine ring oxidation and opening steps. The enzyme proposed to catalyze each step is shown. The K. oxytoca gene for adenine deaminase was not identified in this study. Dashed lines show reactions that can occur spontaneously.Some organisms express only the latter portion of the purine utilization pathway and cannot use purines or urate as sole sources of nitrogen. For example, Escherichia coli K-12 can use allantoin and its catabolites as the sole nitrogen source, albeit only under anaerobic conditions (21). Saccharomyces cerevisiae uses allantoin as a nitrogen storage compound (17). However, the complete pathway is present in other bacterial and fungal species, including Bacillus subtilis (84) and Aspergillus nidulans (83).Molybdoenzymes (excepting dinitrogenase) contain the molybdenum cofactor Mo-molybdopterin (42). Thus, mutations in genes for molybdenum cofactor biosynthetic enzymes (mol genes in bacteria and cnx in A. nidulans) confer pleiotropic phenotypes: these mutants can utilize neither nitrate nor purines, due to lack of the molybdoenzymes nitrate reductase and xanthine dehydrogenase (74). We previously reported that Klebsiella oxytoca mol mutants cannot assimilate nitrate but can utilize xanthine as the sole nitrogen source (32). This suggested, as one possibility, that K. oxytoca uses a molybdenum-independent enzyme in place of conventional xanthine dehydrogenase. Results reported here demonstrate that this is correct, as insertion mutants blocked specifically in xanthine and hypoxanthine utilization define the structural genes for an apparent two-component Reiske nonheme iron oxygenase.Here, we report analysis of 12 genes whose products catalyze conversion of purines to allantoate. Our investigation of the remaining genes, whose products catalyze allantoate utilization, is ongoing. Results show that several steps in the overall pathway are catalyzed by previously undescribed enzymes.While this paper was in review, the paper by de la Riva et al. (24), describing the hpxDE, hpxR, hpxO, and hpxPQT genes from Klebsiella pneumoniae W70, was posted in the “JB Accepts” section of the Journal of Bacteriology online edition. Results and conclusions concerning these seven genes are congruent between the two studies.(Some of the work presented here was submitted by Danielle Carl in 1994 as part of an undergraduate thesis to the Cornell University Division of Biological Sciences Honors Program.)  相似文献   
29.

Background  

Exposure of cells to environmental stress conditions can lead to the interruption of several intracellular processes, in particular those performed by macromolecular complexes such as the spliceosome.  相似文献   
30.
Traditional approaches for managing aquatic resources have often failed to account for effects of anthropogenic disturbances on biota that are not directly reflected by chemical and physical proxies of environmental condition. The index of biotic integrity (IBI) is a potentially effective assessment method to integrate ecological, functional, and structural aspects of aquatic systems. A macrophyte-based IBI was developed for Minnesota lakes to assess the ability of aquatic plant communities to indicate environmental condition. The index was developed using quantitative point intercept vegetation surveys for 97 lakes that represent a range of limnological and watershed characteristics. We followed an approach similar to that used in Wisconsin to develop the aquatic macrophyte community index (AMCI). Regional adaptation of the AMCI required the identification of species representative of macrophyte communities in Minnesota. Metrics and scaling methods were also substantially modified to produce a more empirically robust index. Regression analyses indicated that IBI scores reflected statewide differences in lake trophic state (R2 = 0.57, F = 130.3, df = 1, 95, p < 0.005), agricultural (R2 = 0.51, F = 83.0, df = 1, 79, p < 0.005), urban (R2 = 0.22, F = 23.0, df = 1, 79, p < 0.005), and forested land uses (R2 = 0.51, F = 84.7, df = 1, 79, p < 0.005), and county population density (R2 = 0.14, F = 16.6, df = 1, 95, p < 0.005). Variance partitioning analyses using multiple regression models indicated a unique response of the IBI to human-induced stress separate from a response to natural lake characteristics. The IBI was minimally affected by differences in sample point density as indicated by Monte Carlo analyses of reduced sampling effort. Our analysis indicates that a macrophyte IBI calibrated for Minnesota lakes could be useful for identifying differences in environmental condition attributed to human-induced stress gradients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号