首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   693篇
  免费   38篇
  国内免费   2篇
  2023年   4篇
  2022年   4篇
  2021年   14篇
  2020年   8篇
  2019年   18篇
  2018年   21篇
  2017年   13篇
  2016年   15篇
  2015年   20篇
  2014年   29篇
  2013年   45篇
  2012年   58篇
  2011年   42篇
  2010年   39篇
  2009年   28篇
  2008年   45篇
  2007年   41篇
  2006年   40篇
  2005年   43篇
  2004年   37篇
  2003年   50篇
  2002年   35篇
  2001年   6篇
  2000年   4篇
  1999年   7篇
  1998年   9篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1992年   5篇
  1991年   5篇
  1990年   4篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   5篇
  1983年   4篇
  1982年   2篇
  1981年   1篇
  1980年   3篇
  1978年   3篇
  1976年   1篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
排序方式: 共有733条查询结果,搜索用时 281 毫秒
71.
A large number of cellular processes are mediated by protein-protein interactions, often specified by particular protein binding modules. PDZ domains make up an important class of protein-protein interaction modules that typically bind to the C-terminus of target proteins. These domains act as a scaffold where signaling molecules are linked to a multiprotein complex. Human glutaminase interacting protein (GIP), also known as tax interacting protein 1, is unique among PDZ domain-containing proteins because it is composed almost exclusively of a single PDZ domain rather than one of many domains as part of a larger protein. GIP plays pivotal roles in cellular signaling, protein scaffolding, and cancer pathways via its interaction with the C-terminus of a growing list of partner proteins. We have identified novel internal motifs that are recognized by GIP through combinatorial phage library screening. Leu and Asp residues in the consensus sequence were identified to be critical for binding to GIP through site-directed mutagenesis studies. Structure-based models of GIP bound to two different surrogate peptides determined from nuclear magnetic resonance constraints revealed that the binding pocket is flexible enough to accommodate either the smaller carboxylate (COO(-)) group of a C-terminal recognition motif or the bulkier aspartate side chain (CH(2)COO(-)) of an internal motif. The noncanonical ILGF loop in GIP moves in for the C-terminal motif but moves out for the internal recognition motifs, allowing binding to different partner proteins. One of the peptides colocalizes with GIP within human glioma cells, indicating that GIP might be a potential target for anticancer therapeutics.  相似文献   
72.
Recent findings regarding Dll4 function in physiological and pathological conditions indicate that this Notch ligand may constitute an important therapeutic target. Dll4 appears to be a major anti-angiogenic agent, occupying a central role in various angiogenic pathways. The first trials of anti-Dll4 therapy in mice demonstrated a paradoxical effect, as it reduced tumor perfusion and growth despite leading to an increase in vascular density. This is seen as the result of insufficient maturation of the newly formed vasculature causing a circulatory defect and increased tumor hypoxia. As Dll4 function is known to be closely dependent on expression levels, we envisioned that the therapeutic anti-Dll4 dosage could be modulated to result in the increase of adequately functional blood vessels. This would be useful in conditions where vascular function is a limiting factor for recovery, like wound healing and tissue hypoxia, especially in diabetic patients. Our experimental results in mice confirmed this possibility, revealing that low dosage inhibition of Dll4/Notch signaling causes improved vascular function and accelerated wound healing.  相似文献   
73.
74.
75.
Despite recent progress in cell-analysis technology, rapid classification of cells remains a very difficult task. Among the techniques available, flow cytometry (FCM) is considered especially powerful, because it is able to perform multiparametric analyses of single biological particles at a high flow rate-up to several thousand particles per second. Moreover, FCM is nondestructive, and flow cytometric analysis can be performed on live cells. The current limit for simultaneously detectable fluorescence signals in FCM is around 8-15 depending upon the instrument. Obtaining multiparametric measurements is a very complex task, and the necessity for fluorescence spectral overlap compensation creates a number of additional difficulties to solve. Further, to obtain well-separated single spectral bands a very complex set of optical filters is required. This study describes the key components and principles involved in building a next-generation flow cytometer based on a 32-channel PMT array detector, a phase-volume holographic grating, and a fast electronic board. The system is capable of full-spectral data collection and spectral analysis at the single-cell level. As demonstrated using fluorescent microspheres and lymphocytes labeled with a cocktail of antibodies (CD45/FITC, CD4/PE, CD8/ECD, and CD3/Cy5), the presented technology is able to simultaneously collect 32 narrow bands of fluorescence from single particles flowing across the laser beam in <5 μs. These 32 discrete values provide a proxy of the full fluorescence emission spectrum for each single particle (cell). Advanced statistical analysis has then been performed to separate the various clusters of lymphocytes. The average spectrum computed for each cluster has been used to characterize the corresponding combination of antibodies, and thus identify the various lymphocytes subsets. The powerful data-collection capabilities of this flow cytometer open up significant opportunities for advanced analytical approaches, including spectral unmixing and unsupervised or supervised classification.  相似文献   
76.
ABSTRACT: BACKGROUND: Conventional diagnosis and identification of bacteria requires shipment of samples to a laboratory for genetic and biochemical analysis. This process can take days and imposes significant delay to action in situations where timely intervention can save lives and reduce associated costs. To enable faster response to an outbreak, a low-cost, small-footprint, portable microbial-identification instrument using forward scatterometry has been developed. RESULTS: This device, weighing 9 lb and measuring 12 [MULTIPLICATION SIGN] 6 [MULTIPLICATION SIGN] 10.5 in., utilizes elastic light scatter (ELS) patterns to accurately capture bacterial colony characteristics and delivers the classification results via (non-italic form) wireless access. The overall system consists of two CCD cameras, one rotational and one translational stage, and a 635-nm laser diode. Various software algorithms such as Hough transform, 2-D geometric moments, and the traveling salesman problem (TSP) have been implemented to provide colony count and circularity, centering process, and minimized travel time among colonies. CONCLUSIONS: Experiments were conducted with four bacteria genera using pure and mixed plate and as proof of principle a field test was conducted in four different locations where the average classification rate ranged between 95 and 100%.  相似文献   
77.
The existence of several prion strains and their capacity of overcoming species barriers seem to point to a high conformational adaptability of the prion protein. To investigate this structural plasticity, we studied here the aggregation pathways of the human prion peptide PrP82-146, a major component of the Gerstmann-Sträussler-Scheinker amyloid disease.By Fourier transform infrared (FT-IR) spectroscopy, electron microscopy, and atomic force microscopy (AFM), we monitored the time course of PrP82-146 fibril formation. After incubation at 37 °C, the unfolded peptide was found to aggregate into oligomers characterized by intermolecular β-sheet infrared bands. At a critical oligomer concentration, the emergence of a new FT-IR band allowed to detect fibril formation. A different intermolecular β-sheet interaction of the peptides in oligomers and in fibrils is, therefore, detected by FT-IR spectroscopy, which, in addition, suggests a parallel orientation of the cross β-sheet structures of PrP82-146 fibrils. By AFM, a wide distribution of PrP82-146 oligomer volumes—the smallest ones containing from 5 to 30 peptides—was observed. Interestingly, the statistical analysis of AFM data enabled us to detect a quantization in the oligomer height values differing by steps of ∼ 0.5 nm that could reflect an orientation of oligomer β-strands parallel with the sample surface. Different morphologies were also detected for fibrils that displayed high heterogeneity in their twisting periodicity and a complex hierarchical assembly.Thermal aggregation of PrP82-146 was also investigated by FT-IR spectroscopy, which indicated for these aggregates an intermolecular β-sheet interaction different from that observed for oligomers and fibrils. Unexpectedly, random aggregates, induced by solvent evaporation, were found to display a significant α-helical structure as well as several β-sheet components.All these results clearly point to a high plasticity of the PrP82-146 peptide, which was found to be capable of undergoing several aggregation pathways, with end products displaying different secondary structures and intermolecular interactions.  相似文献   
78.
Kinetic as well as energetic aspects of the thermal denaturation of Trichoderma reesei endo-1,4-beta-xylanase II (TRX II) and its three thermostable disulfide mutants were characterized by means of differential scanning calorimetry (DSC) in different solution conditions. The calorimetric transitions were strongly scan-rate dependent, characteristic for an irreversible, kinetically controlled protein denaturation. The DSC-determined T*-values (the temperature at which the denaturation rate constant equals 1min(-1)), and the activation free energies for the transitions are consistent with the apparent transition temperatures of TRX II determined earlier by mass spectrometry. Protein aggregation, connected with the irreversibility of the transitions, was present in all cases but was less pronounced with the mutants as well as highly dependent on experimental conditions.  相似文献   
79.
The homopentameric B-subunit of Shiga toxin (STxB) is used as a tool to deliver antigenic peptides and proteins to the cytosolic compartment of dendritic cells (DCs). In this study, a series of interface mutants of STxB has been constructed. All mutants retained their overall conformation, while a loss in thermal stability was observed. This effect was even more pronounced in trifluoroethanol solutions that mimic the membrane environment. Despite this, all mutants were equally efficient at delivering a model antigenic protein into the MHC class I-restricted antigen presentation pathway of mouse DCs, suggesting that the structural stability of STxB is not a key factor in the membrane translocation process.  相似文献   
80.
An investigation was carried out of the composition of metabolites in pine seedlings tissues at the initial stages of the infectious process caused by pathogenic fungi Armillaria ostoyae, which causes a root rot of trees and degradation of forest resources. With the help of successive extraction with organic solvents of different polarity, more than 190 metabolites were extracted from the needles and roots of the seedlings and then identified by GC–MS method. The composition of the extracts from control plants and those inoculated with Armillaria ostoyae were compared. It was established that part of secondary metabolites (glucosamines and free amino acids, carbohydrates raffinose and trehalose) were present only in the tissues of inoculated plants. Possible roles of some of these compounds appearing in the roots of seedlings infected with the fungus are also discussed in the paper.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号