首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   156篇
  免费   6篇
  2021年   2篇
  2020年   4篇
  2019年   2篇
  2018年   5篇
  2017年   6篇
  2016年   4篇
  2015年   5篇
  2014年   7篇
  2013年   14篇
  2012年   18篇
  2011年   23篇
  2010年   10篇
  2009年   9篇
  2008年   9篇
  2007年   10篇
  2006年   4篇
  2005年   5篇
  2004年   12篇
  2003年   6篇
  2002年   2篇
  1999年   2篇
  1997年   1篇
  1993年   1篇
  1991年   1篇
排序方式: 共有162条查询结果,搜索用时 31 毫秒
71.
It has been well established that a single amino acid sequence can give rise to several conformationally distinct amyloid states. The extent to which amyloid structures formed within the same sequence are different, however, remains unclear. To address this question, we studied two amyloid states (referred to as R- and S-fibrils) produced in vitro from highly purified full-length recombinant prion protein. Several biophysical techniques including X-ray diffraction, CD, Fourier transform infrared spectroscopy (FTIR), hydrogen-deuterium exchange, proteinase K digestion, and binding of a conformation-sensitive fluorescence dye revealed that R- and S-fibrils have substantially different secondary, tertiary, and quaternary structures. While both states displayed a 4. 8-Å meridional X-ray diffraction typical for amyloid cross-β-spines, they showed markedly different equatorial profiles, suggesting different folding pattern of β-strands. The experiments on hydrogen-deuterium exchange monitored by FTIR revealed that only small fractions of amide protons were protected in R- or S-fibrils, an argument for the dynamic nature of their cross-β-structure. Despite this fact, both amyloid states were found to be very stable conformationally as judged from temperature-induced denaturation monitored by FTIR and the conformation-sensitive dye. Upon heating to 80 °C, only local unfolding was revealed, while individual state-specific cross-β features were preserved. The current studies demonstrated that the two amyloid states formed by the same amino acid sequence exhibited significantly different folding patterns that presumably reflect two different architectures of cross-β-structure. Both S- and R-fibrils, however, shared high conformational stability, arguing that the energy landscape for protein folding and aggregation can contain several deep free-energy minima.  相似文献   
72.
This study investigates a proposed design of a peptide sequence that is based on a bioactive conformation of statins that act as the competitive inhibitors of HMG-CoA for HMGR. To bridge these heterogeneous organic compounds, a conformational aspect relating to an analysis of the flexibility of the peptide molecules and their occupied volumes was applied to the peptide design. The design criterion was formulated in terms of a proximity parameter (Pr), reflecting the probability of an active peptide conformation to approximate the statin. Through a structure-functional analysis of previously synthesized peptides and statin molecules, nine peptides were selected for the peptide library. Comparing the calculated proximity parameters, four peptides (IAVE, YAVE, IVAE, and YVAE) from the library were selected and synthesized. In vitro assays elucidated the inhibition properties for HMGR that are exhibited by these peptides. Among all peptides, YVAE showed the highest ability to inhibit HMGR. A kinetic analysis revealed that this peptide is a competitive inhibitor of HMG-CoA with an equilibrium constant of inhibitor binding (K(i)) of 15.2 +/- 1.4 microM. The calculated coefficient correlation (R) between log (IC(50)) and the inverse value of proximity parameter (1/Pr) was found to be 0.99, indicating a high degree of correlation and efficacy of the given approach in the peptide sequence design.  相似文献   
73.
We investigated the influence of Panagen DNA preparations on laboratory animals and IFN-induced human dendritic cells, as well as analyzed the data from a phase II clinical trial in the therapy of breast cancer. It was shown that this treatment resulted in increased number of CD8+/perforin+ T cells in peripheral lymphoid organs of experimental animals, in mixed lymphocyte culture population and in peripheral blood of breast cancer patients. Moreover, we demonstrated that when Panagen DNA preparations are used in combination with the standard FAC-based breast cancer therapies, non-specific immune response activity remains at the same levels as observed prior to therapy, whereas in FAC-placebo patients, non-specific immunity is greatly diminished.  相似文献   
74.
Barrier-protective agonists induce association of focal adhesions (FA) and adherens junctions (AJ) in endothelial cells. Here we identified specific domains of FA protein paxillin interacting with AJ protein and examined regulation of paxillin domain interactions with β-catenin by Rac GTPase. Co-expression of paxillin LD-1,2; LD-3,4; LIM-1,2; and LIM-3,4 domains with β-catenin showed exclusive interaction of LIM-1,2 and LIM-3,4 with β-catenin, which was enhanced by agonist-induced Rac activation or expression of activated Rac mutant. These results demonstrate a novel function of paxillin LIM domains in targeting β-catenin in a Rac-dependent manner, which may play a role in Rac-dependent control of FA-AJ interactions and monolayer integrity.  相似文献   
75.
Coenzyme A synthase (CoAsy) is a bifunctional enzyme which facilitates the last two steps of Coenzyme A biogenesis in higher eukaryotes. Here we describe that CoAsy forms a complex with enhancer of mRNA-decapping protein 4 (EDC4), a central scaffold component of processing bodies. CoAsy/EDC4 complex formation is regulated by growth factors and is affected by cellular stresses. EDC4 strongly inhibits the dephospho-CoA kinase activity of CoAsy in vitro. Transient overexpression of EDC4 decreases cell proliferation, and further co-expression of CoAsy diminishes this effect. Here we report that EDC4 might contribute to regulation of CoA biosynthesis in addition to its scaffold function in processing bodies.

Structured summary of protein interactions

CoAsyphysically interacts with EDC4 by anti bait coimmunoprecipitation (View Interaction: 1, 2, 3)  相似文献   
76.
Severe combined deficiency of the 2-oxoacid dehydrogenases, associated with a defect in lipoate synthesis and accompanied by defects in complexes I, II, and III of the mitochondrial respiratory chain, is a rare autosomal recessive syndrome with no obvious causative gene defect. A candidate locus for this syndrome was mapped to chromosomal region 2p14 by microcell-mediated chromosome transfer in two unrelated families. Unexpectedly, analysis of genes in this area identified mutations in two different genes, both of which are involved in [Fe-S] cluster biogenesis. A homozygous missense mutation, c.545G>A, near the splice donor of exon 6 in NFU1 predicting a p.Arg182Gln substitution was found in one of the families. The mutation results in abnormal mRNA splicing of exon 6, and no mature protein could be detected in fibroblast mitochondria. A single base-pair duplication c.123dupA was identified in BOLA3 in the second family, causing a frame shift that produces a premature stop codon (p.Glu42Argfs13). Transduction of fibroblast lines with retroviral vectors expressing the mitochondrial, but not the cytosolic isoform of NFU1 and with isoform 1, but not isoform 2 of BOLA3 restored both respiratory chain function and oxoacid dehydrogenase complexes. NFU1 was previously proposed to be an alternative scaffold to ISCU for the biogenesis of [Fe-S] centers in mitochondria, and the function of BOLA3 was previously unknown. Our results demonstrate that both play essential roles in the production of [Fe-S] centers for the normal maturation of lipoate-containing 2-oxoacid dehydrogenases, and for the assembly of the respiratory chain complexes.  相似文献   
77.
Previous studies showed that cyclopenthenone-containing products resulting from oxidation of a natural phospholipid, 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC) exhibit potent barrier-protective effects in the in vitro and in vivo models of lung endothelial cell (EC) barrier dysfunction, and these effects are associated with enhancement of peripheral actin cytoskeleton, cell-cell and cell-substrate contacts driven by activation of Rac and Cdc42 GTPases. Rap1 GTPase is another member of small GTPase family involved in control of cell-cell interactions; however, its involvement in EC barrier-protective effects by OxPAPC remains unknown. This study examined a role of Rap1 in regulation of OxPAPC-induced interactions in adherens junctions (AJ) and tight junctions (TJ) as a novel mechanism of EC barrier preservation in vitro and in vivo. Immunofluorescence analysis, subcellular fractionation, and co-immunoprecipitation assays indicate that OxPAPC promoted accumulation of AJ proteins: VE-cadherin, p120-catenin, and β-catenin; and TJ proteins: ZO-1, occludin, and JAM-A in the cell membrane, and induced novel cross-interactions between AJ and TJ protein complexes, that were dependent on OxPAPC-induced Rap1 activation. Inhibition of Rap1 function suppressed OxPAPC-mediated pulmonary EC barrier enhancement and AJ and TJ interactions in vitro, as well as inhibited protective effects of OxPAPC against ventilator-induced lung injury in vivo. These results show for the first time a role of Rap1-mediated association between adherens junctions and tight junction complexes in the OxPAPC-induced pulmonary vascular EC barrier protection.  相似文献   
78.
The present study investigated the interactions among the complement membrane attack complex (MAC), CCL2, and VEGF that occur in vivo during the development of choroidal neovascularization (CNV). We first investigated the sequential expression of MAC, CCL2, and VEGF during laser-induced CNV in C57BL/6 mice. Increased MAC deposition was detected at 1 h, CCL2 increased at 3 h, and VEGF was up-regulated at day 3 post-laser treatment. These results suggested that during laser-induced CNV, MAC, CCL2 and VEGF are formed and/or expressed in the following order: MAC → CCL2 → VEGF. To determine the cross-talk between MAC, CCL2, and VEGF during laser-induced CNV, neutralizing antibodies were injected both systemically and locally to block the bioactivity of each molecule. Blocking MAC formation inhibited CCL2 and VEGF expression and also limited CNV formation, whereas neutralization of CCL2 bioactivity did not affect MAC deposition; however, it reduced VEGF expression and CNV formation. When bioactivity of VEGF was blocked, CNV formation was significantly inhibited, but MAC deposition was not affected. Together, our results demonstrate that MAC is an upstream mediator and effect of MAC on the development of laser-induced CNV can be attributed to its direct effect on VEGF as well as its effect on VEGF that is mediated by CCL2. Understanding the interplay between immune mediators is critical to gain insight into the pathogenesis of CNV.  相似文献   
79.
In this study, we describe a new method for inducing choroidal neovascularization (CNV) in C57BL/6 mice, an animal model of wet age-related macular degeneration (AMD). AMD is a disease that causes central blindness in humans. We injected PEG-8 subretinally in different doses (0.125-2 mg) to induce CNV. After PEG-8 injection, we examined CNV at several time points (days 3-42). We also used Western blotting, immunohistochemistry, and ELISA to examine the complement component C3 split products, C9, VEGF, TGF-β2, and basic FGF. As early as day 1 after treatment, we found that a single subretinal injection of 1 mg of PEG-8 increased the C3 split products and the C9, TGF-β2, and basic FGF levels in the retinal pigment epithelium-choroid tissue. By day 3 after PEG-8 injection, the intraocular activation of the complement system caused induction and progression of CNV, including new vessels penetrating the Bruch's membrane. At day 5 after PEG-8 injection, we observed a fully developed CNV and retinal degeneration. Thus, in this study, we present a new, inexpensive, and accelerated mouse model of CNV that may be useful to study AMD.  相似文献   
80.
Detonation ND (nanodiamond) holds much promise for biological studies and medical applications. Properties like size of particles, inclination for modification of their surface and unambiguous biocompatibility are crucial. Of prime importance is interaction between ND and immune cells, which supervise foreign intrusion into an organism and eliminate it. Neutrophils are more reactive in inflammatory response implementing cytotoxical arsenal including ROS (reactive oxygen species). The aim of the work was to estimate the ability of two ND samples (produced by Diamond Center and PlasmaChem) to keep the vitality of neutrophils from the inflammatory site. The ability of cells to generate ROS in the presence of ND particles is considered as indicating their biocompatibility. IR spectra and size of particles in the samples were characterized. Acid modification of ND was carried out to get the luminescent form. In the biological aspect, ND demonstrated up or down action, depending on the concentration, time and conditions of activation of cells. Weak action of ND in whole blood was obtained possibly owing to the ND adsorbed plasma proteins, which mask active functional groups to interact with the cell membrane. ND did not influence the viability of isolated inflammatory neutrophils in low and moderate concentrations and suppressed it in high concentrations (≥1 g/l). Addition of ND to the cell suspension initiated concentration-dependent reaction to produce ROS similar to respiratory burst. ND up-regulated response to bacterial formylpeptide, but up- and down-modified (low or high concentrations, accordingly) response to such bacterial agents as OZ (opsonized zymosan), which neutrophils swallow up by oxygen-dependent phagocytosis. Localization of the particles on the cell surface as into the cells was identified by monitoring the intrinsic fluorescence of oxidized ND. The various mechanisms that could account for penetration of ND particles into the cell are discussed. Common conclusion concerns compatibility of ND with living neutrophils from inflammatory site and their normal functioning for infection safeguard.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号