首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1558篇
  免费   101篇
  1659篇
  2023年   5篇
  2022年   15篇
  2021年   26篇
  2020年   16篇
  2019年   26篇
  2018年   30篇
  2017年   32篇
  2016年   40篇
  2015年   92篇
  2014年   80篇
  2013年   112篇
  2012年   154篇
  2011年   126篇
  2010年   85篇
  2009年   67篇
  2008年   96篇
  2007年   96篇
  2006年   73篇
  2005年   76篇
  2004年   73篇
  2003年   57篇
  2002年   54篇
  2001年   12篇
  2000年   12篇
  1999年   5篇
  1998年   17篇
  1997年   11篇
  1996年   9篇
  1995年   16篇
  1994年   13篇
  1993年   11篇
  1992年   15篇
  1991年   12篇
  1989年   5篇
  1988年   5篇
  1987年   6篇
  1986年   8篇
  1985年   3篇
  1984年   4篇
  1983年   6篇
  1982年   9篇
  1981年   5篇
  1980年   6篇
  1979年   3篇
  1978年   4篇
  1977年   4篇
  1976年   3篇
  1973年   3篇
  1972年   4篇
  1964年   2篇
排序方式: 共有1659条查询结果,搜索用时 10 毫秒
11.
The New York Consortium on Membrane Protein Structure (NYCOMPS) was formed to accelerate the acquisition of structural information on membrane proteins by applying a structural genomics approach. NYCOMPS comprises a bioinformatics group, a centralized facility operating a high-throughput cloning and screening pipeline, a set of associated wet labs that perform high-level protein production and structure determination by x-ray crystallography and NMR, and a set of investigators focused on methods development. In the first three years of operation, the NYCOMPS pipeline has so far produced and screened 7,250 expression constructs for 8,045 target proteins. Approximately 600 of these verified targets were scaled up to levels required for structural studies, so far yielding 24 membrane protein crystals. Here we describe the overall structure of NYCOMPS and provide details on the high-throughput pipeline.  相似文献   
12.
The release of a potent bone-resorption inhibitor such as zoledronate from a versatile drug delivery system such as SBA 15 has been modeled. The initial and boundary conditions have been defined, together with the system parameters, including the determination of equilibrium and transport parameters. Additionally, the experimental model of the same system has been observed to validate the prediction here developed. This approach represents a powerful tool for the designing of mesoporous implantable drug delivery systems because their release kinetics can be predicted in advance, and this leads to a considerable time and resources saving.  相似文献   
13.
Chromatin in the nucleus is organized in functional sites at variable level of compaction. Structured illumination microscopy (SIM) can be used to generate three-dimensional super-resolution (SR) imaging of chromatin by changing in phase and in orientation a periodic line illumination pattern. The spatial frequency domain is the natural choice to process SIM raw data and to reconstruct an SR image. Using an alternative approach, we demonstrate that the additional spatial information encoded in the knowledge of the position of the illumination pattern can be efficiently decoded using a generalized version of separation of photon by lifetime tuning (SPLIT) that does not require lifetime measurements. In the resulting SPLIT-SIM, the SR image is obtained by isolating a fraction of the intensity corresponding to the center of the diffraction-limited point spread function. This extends the use of the SPLIT approach from stimulated emission depletion microscopy to SIM. The SPLIT-SIM algorithm is based only on phasor analysis and does not require deconvolution. We show that SPLIT-SIM can be used to generate SR images of chromatin organizational motifs with tunable resolution and can be a valuable tool for the imaging of functional sites in the nucleus.  相似文献   
14.
15.
The genera Odontacolus Kieffer and Cyphacolus Priesner are among the most distinctive platygastroid wasps because of their laterally compressed metasomal horn; however, their generic status has remained unclear. We present a morphological phylogenetic analysis comprising all 38 Old World and four Neotropical Odontacolus species and 13 Cyphacolus species, which demonstrates that the latter is monophyletic but nested within a somewhat poorly resolved Odontacolus. Based on these results Cyphacolus syn. n. is placed as a junior synonym of Odontacolus which is here redefined. The taxonomy of Old World Odontacolus s.str. is revised; the previously known species Odontacolus longiceps Kieffer (Seychelles), Odontacolus markadicus Veenakumari (India), Odontacolus spinosus (Dodd) (Australia) and Odontacolus hackeri (Dodd) (Australia) are re-described, and 32 new species are described: Odontacolus africanus Valerio & Austin sp. n. (Congo, Guinea, Kenya, Madagascar, Mozambique, South Africa, Uganda, Zimbabwe), Odontacolus aldrovandii Valerio & Austin sp. n. (Nepal), Odontacolus anningae Valerio & Austin sp. n. (Cameroon), Odontacolus australiensis Valerio & Austin sp. n. (Australia), Odontacolus baeri Valerio & Austin sp. n. (Australia), Odontacolus berryae Valerio & Austin sp. n. (Australia, New Zealand, Norfolk Island), Odontacolus bosei Valerio & Austin sp. n. (India, Malaysia, Sri Lanka), Odontacolus cardaleae Valerio & Austin sp. n. (Australia), Odontacolus darwini Valerio & Austin sp. n. (Thailand), Odontacolus dayi Valerio & Austin sp. n. (Indonesia), Odontacolus gallowayi Valerio & Austin sp. n. (Australia), Odontacolus gentingensis Valerio & Austin sp. n. (Malaysia), Odontacolus guineensis Valerio & Austin sp. n. (Guinea), Odontacolus harveyi Valerio & Austin sp. n. (Australia), Odontacolus heratyi Valerio & Austin sp. n. (Fiji), Odontacolus heydoni Valerio & Austin sp. n. (Malaysia, Thailand), Odontacolus irwini Valerio & Austin sp. n. (Fiji), Odontacolus jacksonae Valerio & Austin sp. n. (Cameroon, Guinea, Madagascar), Odontacolus kiau Valerio & Austin sp. n. (Papua New Guinea), Odontacolus lamarcki Valerio & Austin sp. n. (Thailand), Odontacolus madagascarensis Valerio & Austin sp. n. (Madagascar), Odontacolus mayri Valerio & Austin sp. n. (Indonesia, Thailand), Odontacolus mot Valerio & Austin sp. n. (India), Odontacolus noyesi Valerio & Austin sp. n. (India, Indonesia), Odontacolus pintoi Valerio & Austin sp. n. (Australia, New Zealand, Norfolk Island), Odontacolus schlingeri Valerio & Austin sp. n. (Fiji), Odontacolus sharkeyi Valerio & Austin sp. n. (Thailand), Odontacolus veroae Valerio & Austin sp. n. (Fiji), Odontacolus wallacei Valerio & Austin sp. n. (Australia, Indonesia, Malawi, Papua New Guinea), Odontacolus whitfieldi Valerio & Austin sp. n. (China, India, Indonesia, Sulawesi, Malaysia, Thailand, Vietnam), Odontacolus zborowskii Valerio & Austin sp. n. (Australia), and Odontacolus zimi Valerio & Austin sp. n. (Madagascar). In addition, all species of Cyphacolus are here transferred to Odontacolus: Odontacolus asheri (Valerio, Masner & Austin) comb. n. (Sri Lanka), Odontacolus axfordi (Valerio, Masner & Austin) comb. n. (Australia), Odontacolus bhowaliensis (Mani & Mukerjee) comb. n. (India), Odontacolus bouceki (Austin & Iqbal) comb. n. (Australia), Odontacolus copelandi (Valerio, Masner & Austin) comb. n. (Kenya, Nigeria, Zimbabwe, Thailand), Odontacolus diazae (Valerio, Masner & Austin) comb. n. (Kenya), Odontacolus harteni (Valerio, Masner & Austin) comb. n. (Yemen, Ivory Coast, Paskistan), Odontacolus jenningsi (Valerio, Masner & Austin) comb. n. (Australia), Odontacolus leblanci (Valerio, Masner & Austin) comb. n. (Guinea), Odontacolus lucianae (Valerio, Masner & Austin) comb. n. (Ivory Coast, Madagascar, South Africa, Swaziland, Zimbabwe), Odontacolus normani (Valerio, Masner & Austin) comb. n. (India, United Arab Emirates), Odontacolus sallyae (Valerio, Masner & Austin) comb. n. (Australia), Odontacolus tessae (Valerio, Masner & Austin) comb. n. (Australia), Odontacolus tullyae (Valerio, Masner & Austin) comb. n. (Australia), Odontacolus veniprivus (Priesner) comb. n. (Egypt), and Odontacolus watshami (Valerio, Masner & Austin) comb. n. (Africa, Madagascar). Two species of Odontacolus are transferred to the genus Idris Förster: Idris longispinosus (Girault) comb. n. and Idris amoenus (Kononova) comb. n., and Odontacolus doddi Austin syn. n. is placed as a junior synonym of Odontacolus spinosus (Dodd). Odontacolus markadicus, previously only known from India, is here recorded from Brunei, Malaysia, Sri Lanka, Thailand and Vietnam. The relationships, distribution and biology of Odontacolus are discussed, and a key is provided to identify all species.  相似文献   
16.
A new species of Hirsutella was isolated from unidentified mites on Petri plates inoculated with soil and root fragments collected from asparagus rhizosphere at Virú, Northern Peru. The fungus differs from other Hirsutella species by an envelope surrounding the conidium, conidia dimension and DNA sequences. In PDA cultures, the mycelium produced aerial hyphae with conidiogenous cells mainly at right angles, occasionally showing a secondary conidiophore. The solitary conidia are cymbiform, slightly apiculate, 5.0–6.0 × 3.0–4.0 μm. Phylogenetic analyses with partial rRNA and β-tubulin gene sequences confirmed the fungus as an Hirsutella (Ophiocordycipitaceae). Closest species shown by maximum likelihood and neighbor-joining trees were H. nodulosa and H. aphidis, from which the new species differs for conidium or conidiogenous cells dimensions, lack of synnemata and host type. A recombination event was also detected in the rRNA of the holotype strain, involving Ophiocordyceps sinensis as major parent and O. cochlidiicola as minor parent. A complement, inverted insertion was also found in its rRNA, involving part of the ITS2 and 5.8S regions, flanked by two short nucleotide arrays. Due to conidia dimension and phylogenetic position, the fungus is described as Hirsutella tunicata sp. nov. A review of mononematous Hirsutella species is provided.  相似文献   
17.
Neurodegenerative diseases are associated with misfolding and deposition of specific proteins, either intra or extracellularly in the nervous system. Advanced glycation end products (AGEs) originate from different molecular species that become glycated after exposure to sugars. Several proteins implicated in neurodegenerative diseases have been found to be glycated in vivo and the extent of glycation is related to the pathologies of the patients. Although it is now accepted that there is a direct correlation between AGEs formation and the development of neurodegenerative diseases, several questions still remain unanswered: whether glycation is the triggering event or just an additional factor acting on the aggregation pathway. To this concern, in the present study we have investigated the effect of glycation on the aggregation pathway of the amyloidogenic W7FW14F apomyoglobin. Although this protein has not been related to any amyloid disease, it represents a good model to resemble proteins that intrinsically evolve toward the formation of amyloid aggregates in physiological conditions. We show that D-ribose, but not D-glucose, rapidly induces the W7FW14F apomyoglobin to generate AGEs in a time-dependent manner and protein ribosylation is likely to involve lysine residues on the polypeptide chain. Ribosylation of the W7FW14F apomyoglobin strongly affects its aggregation kinetics producing amyloid fibrils within few days. Cytotoxicity of the glycated aggregates has also been tested using a cell viability assay. We propose that ribosylation in the W7FW14F apomyoglobin induces the formation of a cross-link that strongly reduces the flexibility of the H helix and/or induce a conformational change that favor fibril formation. These results open new perspectives for AGEs biological role as they can be considered not only a triggering factor in amyloidosis but also a player in later stages of the aggregation process.  相似文献   
18.
19.
Brain cholesterol is mainly involved in the cell membrane structure, in signal transduction, neurotransmitter release, synaptogenesis and membrane trafficking. Impairment of brain cholesterol metabolism was described in neurodegenerative diseases, such as Multiple Sclerosis, Alzheimer and Huntington Diseases. Since the blood–brain barrier efficiently prevents cholesterol uptake from the circulation into the brain, de novo synthesis is responsible for almost all cholesterol present there. Cholesterol is converted into 24S-hydroxycholesterol (24OHC) by cholesterol 24-hydroxylase (CYP46A1) expressed in neural cells.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号