首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2638篇
  免费   245篇
  2023年   7篇
  2022年   19篇
  2021年   58篇
  2020年   29篇
  2019年   34篇
  2018年   39篇
  2017年   29篇
  2016年   63篇
  2015年   124篇
  2014年   109篇
  2013年   170篇
  2012年   185篇
  2011年   199篇
  2010年   123篇
  2009年   118篇
  2008年   154篇
  2007年   175篇
  2006年   167篇
  2005年   160篇
  2004年   143篇
  2003年   176篇
  2002年   139篇
  2001年   33篇
  2000年   20篇
  1999年   34篇
  1998年   38篇
  1997年   19篇
  1996年   10篇
  1995年   24篇
  1994年   17篇
  1993年   11篇
  1992年   22篇
  1991年   15篇
  1990年   14篇
  1989年   13篇
  1988年   9篇
  1987年   15篇
  1985年   10篇
  1984年   19篇
  1983年   16篇
  1982年   10篇
  1981年   12篇
  1980年   10篇
  1979年   5篇
  1978年   12篇
  1977年   8篇
  1974年   5篇
  1973年   11篇
  1972年   8篇
  1961年   4篇
排序方式: 共有2883条查询结果,搜索用时 15 毫秒
991.
Hair's importance for insulation and camouflage or human communication means that hairs need to change with season, age or sexual development. Regular, regenerating hair follicle growth cycles produce new hairs which may differ in colour and/or size, e.g., beard development. Hormones of the pineal-hypothalamus-pituitary axis coordinate seasonal changes, while androgens regulate most sexual aspects with paradoxically different effects depending on body site; compare beard growth and balding! Hormones affect follicular mesenchymal-epithelial interactions altering growing time, dermal papilla size and dermal papilla cell, keratinocyte and melanocyte activity. Greater understanding of these mechanisms should improve treatments for poorly controlled hair disorders, alopecia and hirsutism.  相似文献   
992.
993.
994.
Chromatin remodeling through histone acetyltransferase (HAT) and histone deactylase (HDAC) enzymes affects fundamental cellular processes including the cell-cycle, cell differentiation, metabolism, and apoptosis. Nonsense mutations in genes that are involved in histone acetylation and deacetylation result in multiple congenital anomalies with most individuals displaying significant developmental delay, microcephaly and dysmorphism. Here, we report a syndrome caused by de novo heterozygous nonsense mutations in KAT6A (a.k.a., MOZ, MYST3) identified by clinical exome sequencing (CES) in four independent families. The same de novo nonsense mutation (c.3385C>T [p.Arg1129]) was observed in three individuals, and the fourth individual had a nearby de novo nonsense mutation (c.3070C>T [p.Arg1024]). Neither of these variants was present in 1,815 in-house exomes or in public databases. Common features among all four probands include primary microcephaly, global developmental delay including profound speech delay, and craniofacial dysmorphism, as well as more varied features such as feeding difficulties, cardiac defects, and ocular anomalies. We further demonstrate that KAT6A mutations result in dysregulation of H3K9 and H3K18 acetylation and altered P53 signaling. Through histone and non-histone acetylation, KAT6A affects multiple cellular processes and illustrates the complex role of acetylation in regulating development and disease.  相似文献   
995.
996.
Morphine, first characterized in opium from the poppy Papaver somniferum, is one of the strongest known analgesics. Endogenous morphine has been identified in several mammalian cells and tissues. The synthetic pathway of morphine in the opium poppy has been elucidated. The presence of common intermediates in plants and mammals suggests that biosynthesis occurs through similar pathways (beginning with the amino acid l-tyrosine), and the pathway has been completely delineated in plants. Some of the enzymes in the mammalian pathway have been identified and characterized. Two of the latter steps in the morphine biosynthesis pathway are demethylation of thebaine at the O3- and the O6-positions, the latter of which has been difficult to demonstrate. The plant enzymes responsible for both the O3-demethylation and the O6-demethylation are members of the FeII/α-ketoglutarate-dependent dioxygenase family. Previous studies showed that human cytochrome P450 (P450) 2D6 can catalyze thebaine O3-demethylation. We report that demethylation of thebaine at the O6-position is selectively catalyzed by human P450s 3A4 and 3A5, with the latter being more efficient, and rat P450 3A2. Our results do not support O6-demethylation of thebaine by an FeII/α-ketoglutarate-dependent dioxygenase. In rat brain microsomes, O6-demethylation was inhibited by ketoconazole, but not sulfaphenazole, suggesting that P450 3A enzymes are responsible for this activity in the brain. An alternate pathway to morphine, oripavine O6-demethylation, was not detected. The major enzymatic steps in mammalian morphine synthesis have now been identified.  相似文献   
997.
998.
The prevalence of asthma and obesity is increasing worldwide, and obesity is a well-documented risk factor for asthma. The mechanisms underlying this association and parallel time trends remain largely unknown but genetic factors may be involved. Here, we report on a common ∼0.45 Mb genomic inversion at 16p11.2 that can be accurately genotyped via SNP array data. We show that the inversion allele protects against the joint occurrence of asthma and obesity in five large independent studies (combined sample size of 317 cases and 543 controls drawn from a total of 5,809 samples; combined OR = 0.48, p = 5.5 × 10−6). Allele frequencies show remarkable worldwide population stratification, ranging from 10% in East Africa to 49% in Northern Europe, consistent with discordant and extreme genetic drifts or adaptive selections after human migration out of Africa. Inversion alleles strongly correlate with expression levels of neighboring genes, especially TUFM (p = 3.0 × 10−40) that encodes a mitochondrial protein regulator of energy balance and inhibitor of type 1 interferon, and other candidates for asthma (IL27) and obesity (APOB48R and SH2B1). Therefore, by affecting gene expression, the ∼0.45 Mb 16p11.2 inversion provides a genetic basis for the joint susceptibility to asthma and obesity, with a population attributable risk of 39.7%. Differential mitochondrial function and basal energy balance of inversion alleles might also underlie the potential selection signature that led to their uneven distribution in world populations.  相似文献   
999.
Anthelmintic drugs have been applied indiscriminately to control horse nematodes for over 40 years. We undertook a comprehensive study to investigate efficacy of the four available broad-spectrum anthelmintic drugs on 16 Thoroughbred stud farms using the faecal egg count reduction test. Efficacy against strongyles was determined by calculating the percentage of reduction in faecal egg count between the group mean at Day 0 and Days 14–17 post-treatment and the 95% lower confidence intervals estimated by non-parametric bootstrapping. Individual strongyle faecal egg count reduction tests (n = 429) were performed in which 179, 131, 89 and 30 horses were administered ivermectin, moxidectin, pyrantel and fenbendazole, respectively. Moxidectin was efficacious in all tests (faecal egg count reduction range: 99.8–100%; 95% lower confidence intervals range: 96.8–100%) and reduced efficacy of ivermectin (faecal egg count reduction range: 85.7–100%; 95% lower confidence intervals range: 65–100%) was observed in one group of yearlings. Reduced pyrantel efficacy was observed in five groups of yearlings (faecal egg count reduction range: 0–73%; 95% lower confidence intervals range: 0–59.5%), but pyrantel was found to be efficacious when administered to mares (faecal egg count reduction range: 98–99.4%; 95% lower confidence intervals range: 91.8–99.3%). Low efficacy of fenbendazole was always observed (faecal egg count reduction range: 0.4–41%; 95% lower confidence intervals not calculable). Two further methods for estimating efficacy were applied and outputs obtained using all methodologies were in agreement. Efficacy against Parascaris equorum was assessed on four farms: fenbendazole had acceptable efficacy (faecal egg count reduction range: 97.5–99.9%; 95% lower confidence intervals range: 96.3–99.1%), but reduced efficacy of ivermectin was observed (faecal egg count reduction range: 25.5–91.2%; 95% lower confidence intervals range: 6.7–82.4%). Strongyle faecal egg count were analysed at approximately 2 week intervals for up to 12 weeks after anthelmintic drug administration to determine the egg reappearance period for moxidectin, ivermectin and pyrantel. The egg reappearance period for all three anthelmintic drugs was shorter than previously observed. Overall, our results indicate that ivermectin and moxidectin administration provided acceptable efficacy at 14 days; however, egg reappearance period results suggest that these products are working less effectively than measured previously. As shortened egg reappearance period is believed to be an early indicator of resistance, this highlights the issue of impending multi-drug resistance in strongyles on stud farms.  相似文献   
1000.
The formation of fibrillar aggregates has long been associated with neurodegenerative disorders such as Alzheimer and Parkinson diseases. Although fibrils are still considered important to the pathology of these disorders, it is now widely understood that smaller amyloid oligomers are the toxic entities along the misfolding pathway. One characteristic shared by the majority of amyloid oligomers is the ability to disrupt membranes, a commonality proposed to be responsible for their toxicity, although the mechanisms linking this to cell death are poorly understood. Here, we describe the physical basis for the cytotoxicity of oligomers formed by the prion protein (PrP)-derived amyloid peptide PrP(106–126). We show that oligomers of this peptide kill several mammalian cells lines, as well as mouse cerebellar organotypic cultures, and we also show that they exhibit antimicrobial activity. Physical perturbation of model membranes mimicking bacterial or mammalian cells was investigated using atomic force microscopy, polarized total internal reflection fluorescence microscopy, and NMR spectroscopy. Disruption of anionic membranes proceeds through a carpet or detergent model as proposed for other antimicrobial peptides. By contrast, when added to zwitterionic membranes containing cholesterol-rich ordered domains, PrP(106–126) oligomers induce a loss of domain separation and decreased membrane disorder. Loss of raft-like domains may lead to activation of apoptotic pathways, resulting in cell death. This work sheds new light on the physical mechanisms of amyloid cytotoxicity and is the first to clearly show membrane type-specific modes of action for a cytotoxic peptide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号