首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3140篇
  免费   264篇
  国内免费   2篇
  2023年   8篇
  2022年   24篇
  2021年   62篇
  2020年   32篇
  2019年   40篇
  2018年   45篇
  2017年   34篇
  2016年   76篇
  2015年   139篇
  2014年   129篇
  2013年   207篇
  2012年   220篇
  2011年   236篇
  2010年   143篇
  2009年   141篇
  2008年   184篇
  2007年   199篇
  2006年   188篇
  2005年   171篇
  2004年   165篇
  2003年   205篇
  2002年   158篇
  2001年   36篇
  2000年   25篇
  1999年   41篇
  1998年   44篇
  1997年   21篇
  1996年   14篇
  1995年   29篇
  1994年   19篇
  1993年   15篇
  1992年   23篇
  1991年   21篇
  1990年   19篇
  1989年   14篇
  1988年   11篇
  1987年   20篇
  1985年   15篇
  1984年   26篇
  1983年   19篇
  1982年   15篇
  1981年   14篇
  1980年   11篇
  1979年   10篇
  1978年   14篇
  1977年   9篇
  1976年   7篇
  1974年   9篇
  1973年   15篇
  1972年   10篇
排序方式: 共有3406条查询结果,搜索用时 15 毫秒
261.
To observe real-time interactions between green fluorescent protein-labeled immune cells and invading bacteria in the zebrafish (Danio rerio), a series of plasmids was constructed for the red fluorescent protein (RFP) labeling of a variety of fish and human pathogens. The aim of this study was to create a collection of plasmids that would express RFP pigments both constitutively and under tac promoter regulation and that would be nontoxic and broadly transmissible to a variety of Gram-negative bacteria. DNA fragments encoding the RFP dimeric (d), monomeric (m), and tandem dimeric (td) derivatives d-Tomato, td-Tomato, m-Orange, and m-Cherry were cloned into the IncQ-based vector pMMB66EH in Escherichia coli. Plasmids were mobilized into recipient strains by conjugal mating. Pigment production was inducible in Escherichia coli, Pseudomonas aeruginosa, Edwardsiella tarda, and Vibrio (Listonella) anguillarum strains by isopropyl-β-d-thiogalactopyranoside (IPTG) treatment. A spontaneous mutant exconjugant of P. aeruginosa PA14 was isolated that expressed td-Tomato constitutively. Complementation analysis revealed that the constitutive phenotype likely was due to a mutation in lacIq carried on pMMB66EH. DNA sequence analysis confirmed the presence of five transitions, four transversions, and a 2-bp addition within a 14-bp region of lacI. Vector DNA was purified from this constitutive mutant, and structural DNA sequences for RFP pigments were cloned into the constitutive vector. Exconjugants of P. aeruginosa, E. tarda, and V. anguillarum expressed all pigments in an IPTG-independent fashion. Results from zebrafish infectivity studies indicate that RFP-labeled pathogens will be useful for the study of real-time interactions between host cells of the innate immune system and the infecting pathogen.The use of fluorescent proteins as probes has proven to be a vital tool in elucidating spatial and temporal patterns of gene expression, protein localization, and protein-protein interactions in vivo. In addition to well-known contributions to cell biology and biochemistry, the use of fluorescent proteins to label bacteria has provided insight into complex host-pathogen interactions and routes of entry (14, 23, 29).The zebrafish has become an attractive model for in vivo infection studies. As an optically clear organism at the embryo and larval developmental stages, zebrafish are amenable to visualization during challenge with fluorescently labeled pathogens. In addition, fertilization in the zebrafish occurs ex utero, thereby simplifying infection by either static immersion or microinjection. The visualization of infection in situ can be conducted on the whole embryo using confocal or wide-field epifluorescence microscopy, an approach not possible in other model systems. To date, several zebrafish infection models have been established employing both fish and mammalian pathogens, including Edwardsiella tarda (21), E. ictaluri (14, 23), Staphylococcus aureus (16), Streptococcus pyogenes and S. iniae (18), and Pseudomonas aeruginosa (4). Illustrating the value of fluorescently labeled bacteria in studies of microbial pathogenesis, Van der Sar and colleagues established the zebrafish as a model for Salmonella enterica serovar Typhimurium infections using DsRed-labeled bacteria (30). Similarly, O''Toole and colleagues made use of a green fluorescent protein (GFP)-labeled strain of Vibrio (Listonella) anguillarum to elucidate the natural route of invasion of this fish pathogen (20). However, obstacles to the construction of fluorescently labeled microbes have prevented many from taking advantage of this technique to permit the real-time in situ analysis of infection. These obstacles include the nontransformable nature of many pathogens and the toxicity of RFP expression from high-copy-number plasmids.Recently, two transgenic lines of zebrafish that express GFP in cells of the myeloid lineage have been developed. Lawson et al. described a transgenic (Tg) zebrafish that utilizes the protooncogene fli1 promoter to drive the expression of enhanced GFP (EGFP) (15). The fli1 gene is preferentially expressed in endothelial and hematopoietic cells. Intended for the study of vascular development, Tg(fli1::EGFP) zebrafish not only have fluorescent endothelial cells but also macrophages (15), making this zebrafish line attractive to those who study innate immunity. It has been shown that zebrafish macrophages possess strong phagocytic properties and migrate to sites of bacterial infection (13). In 2006, Renshaw and his colleagues engineered a novel Tg(mpo::GFP) zebrafish that expresses GFP under the control of the neutrophil-specific myeloperoxidase promoter (22). In this study, they characterized the GFP-labeled neutrophils, noting their capability of chemotaxis at wound sites (22). Given the recent progress in zebrafish genetics with regard to these GFP-expressing transgenic lines, there was a clear need for a simple method for the RFP labeling of Gram-negative bacteria. Such a method would facilitate further studies of microbial pathogenesis in the zebrafish and could further elucidate phagocyte (GFP labeled)-pathogen (RFP labeled) interactions, kinetics of bacterial clearance, and mechanisms of phagocyte migration to sites of bacterial infection.For the purposes of this study, we employed dimeric (d) and monomeric (m) red fluorescent protein variants d-Tomato, td-Tomato, m-Orange, and m-Cherry, which were constructed by Shaner et al. (25). These variants were chosen based on combinations of their high relative brightness and decreased RFP maturation times compared to those of the original RFPs (25). We describe here a simple method for the RFP labeling of Gram-negative bacteria.  相似文献   
262.
The predicted relationship between home-range size and group mass in primates developed by Clutton-Brock and Harvey (1977) has proved extremely robust in describing the use of space by most primate species. However, mandrills (Mandrillus sphinx) are now known to have an extreme group mass in the wild, far larger than that of the species used originally to generate that relationship, and so it was unknown whether this relationship would be robust for this species. We investigated the home-range size and use of a wild horde of ca. 700 mandrills in Lopé National Park, Gabon, using radiotelemetry. The total area the horde used over a 6-yr period [100% minimum convex polygon (MCP)] was 182 km2, including 89 km2 of suitable forest habitat. Mandrills used gallery forests and isolated forest fragments with high botanical diversity far more intensively that the continuous forest and completely avoided savanna and marsh. Peeled polygons and fixed kernel contours revealed multiple centres of use, with the horde spending more than half its time in <10% of the total documented range, typical of a frugivore using a patchy environment. Home-range size and internal structure varied considerably between years, but total home range fitted the predicted relationship between group mass and home range size, despite being an outlier to the dataset. We discuss the conservation implications of the species’ space requirements, in light of current pressures on land use in their range.  相似文献   
263.
Chen W  van der Kamp MW  Daggett V 《Biochemistry》2010,49(45):9874-9881
Prion diseases are fatal neurodegenerative disorders that involve the conversion of the normal cellular form of the prion protein (PrP(C)) to a misfolded pathogenic form (PrP(Sc)). There are many genetic mutations of PrP associated with human prion diseases. Three of these point mutations are located at the first strand of the native β-sheet in human PrP: G131V, S132I, and A133V. To understand the underlying structural and dynamic effects of these disease-causing mutations on the human PrP, we performed molecular dynamics of wild-type and mutated human PrP. The results indicate that the mutations induced different effects but they were all related to misfolding of the native β-sheet: G131V caused the elongation of the native β-sheet, A133V disrupted the native β-sheet, and S132I converted the native β-sheet to an α-sheet. The observed changes were due to the reorientation of side chain-side chain interactions upon introducing the mutations. In addition, all mutations impaired a structurally conserved water site at the native β-sheet. Our work suggests various misfolding pathways for human PrP in response to mutation.  相似文献   
264.
Diamond-Blackfan anemia (DBA), an inherited bone marrow failure syndrome characterized by anemia that usually presents before the first birthday or in early childhood, is associated with birth defects and an increased risk of cancer. Although anemia is the most prominent feature of DBA, the disease is also characterized by growth retardation and congenital malformations, in particular craniofacial, upper limb, heart, and urinary system defects that are present in ∼30%–50% of patients. DBA has been associated with mutations in seven ribosomal protein (RP) genes, RPS19, RPS24, RPS17, RPL35A, RPL5, RPL11, and RPS7, in about 43% of patients. To continue our large-scale screen of RP genes in a DBA population, we sequenced 35 ribosomal protein genes, RPL15, RPL24, RPL29, RPL32, RPL34, RPL9, RPL37, RPS14, RPS23, RPL10A, RPS10, RPS12, RPS18, RPL30, RPS20, RPL12, RPL7A, RPS6, RPL27A, RPLP2, RPS25, RPS3, RPL41, RPL6, RPLP0, RPS26, RPL21, RPL36AL, RPS29, RPL4, RPLP1, RPL13, RPS15A, RPS2, and RPL38, in our DBA patient cohort of 117 probands. We identified three distinct mutations of RPS10 in five probands and nine distinct mutations of RPS26 in 12 probands. Pre-rRNA analysis in lymphoblastoid cells from patients bearing mutations in RPS10 and RPS26 showed elevated levels of 18S-E pre-rRNA. This accumulation is consistent with the phenotype observed in HeLa cells after knockdown of RPS10 or RPS26 expression with siRNAs, which indicates that mutations in the RPS10 and RPS26 genes in DBA patients affect the function of the proteins in rRNA processing.  相似文献   
265.
Molecular enzymology of lipoxygenases   总被引:1,自引:0,他引:1  
Lipoxygenases (LOXs) are lipid peroxidizing enzymes, implicated in the pathogenesis of inflammatory and hyperproliferative diseases, which represent potential targets for pharmacological intervention. Although soybean LOX1 was discovered more than 60 years ago, the structural biology of these enzymes was not studied until the mid 1990s. In 1993 the first crystal structure for a plant LOX was solved and following this protein biochemistry and molecular enzymology became major fields in LOX research. This review focuses on recent developments in molecular enzymology of LOXs and summarizes our current understanding of the structural basis of LOX catalysis. Various hypotheses explaining the reaction specificity of different isoforms are critically reviewed and their pros and cons briefly discussed. Moreover, we summarize the current knowledge of LOX evolution by profiling the existence of LOX-related genomic sequences in the three kingdoms of life. Such sequences are found in eukaryotes and bacteria but not in archaea. Although the biological role of LOXs in lower organisms is far from clear, sequence data suggests that this enzyme family might have evolved shortly after the appearance of atmospheric oxygen on earth.  相似文献   
266.
Transmissible spongiform encephalopathies, or prion diseases, are caused by misfolding and aggregation of the prion protein PrP. Conversion from the normal cellular form (PrPC) or recombinant PrP (recPrP) to a misfolded form is pH-sensitive, in that misfolding and aggregation occur more readily at lower pH. To gain more insight into the influence of pH on the dynamics of PrP and its potential to misfold, we performed extensive molecular-dynamics simulations of the recombinant PrP protein (residues 90-230) in water at three different pH regimes: neutral (or cytoplasmic) pH (∼7.4), middle (or endosomal) pH (∼5), and low pH (<4). We present five different simulations of 50 ns each for each pH regime, amounting to a total of 750 ns of simulation time. A detailed analysis and comparison with experiment validate the simulations and lead to new insights into the mechanism of pH-induced misfolding. The mobility of the globular domain increases with decreasing pH, through displacement of the first helix and instability of the hydrophobic core. At middle pH, conversion to a misfolded (PrPSc-like) conformation is observed. The observed changes in conformation and stability are consistent with experimental data and thus provide a molecular basis for the initial steps in the misfolding process.  相似文献   
267.
268.
Blanpain C  Horsley V  Fuchs E 《Cell》2007,128(3):445-458
Most epithelial tissues self-renew throughout adult life due to the presence of multipotent stem cells and/or unipotent progenitor cells. Epithelial stem cells are specified during development and are controlled by epithelial-mesenchymal interactions. Despite morphological and functional differences among epithelia, common signaling pathways appear to control epithelial stem cell maintenance, activation, lineage determination, and differentiation. Additionally, deregulation of these pathways can lead to human disorders including cancer. Understanding epithelial stem cell biology has major clinical implications for the diagnosis, prevention, and treatment of human diseases, as well as for regenerative medicine.  相似文献   
269.
Abs of the secretory Ig (SIg) system reinforce numerous innate defense mechanisms to protect the mucosal surfaces against microbial penetration. SIgs are generated by a unique cooperation between two distinct cell types: plasma cells that produce polymers of IgA or IgM (collectively called pIgs) and polymeric Ig receptor (pIgR)-expressing secretory epithelial cells that mediate export of the pIgs to the lumen. Apical delivery of SIgs occurs by cleavage of the pIgR to release its extracellular part as a pIg-bound secretory component, whereas free secretory components are derived from an unoccupied receptor. The joining chain (J chain) is crucial in pIg/SIg formation because it serves to polymerize Igs and endows them with a binding site for the pIgR. In this study, we show that the J chain from divergent tetrapods including mammals, birds, and amphibians efficiently induced polymerization of human IgA, whereas the J chain from nurse shark (a lower vertebrate) did not. Correctly assembled polymers showed high affinity to human pIgR. Sequence analysis of the J chain identified two regions, conserved only in tetrapods, which by mutational analysis were found essential for pIgA-pIgR complexing. Furthermore, we isolated and characterized pIgR from the amphibian Xenopus laevis and demonstrated that its pIg binding domain showed high affinity to human pIgA. These results showed that the functional site of interaction between pIgR, J chain and Ig H chains is conserved in these species and suggests that SIgs originated in an ancestor common to tetrapods.  相似文献   
270.
Recent studies have defined vaccinia virus (VACV)-specific CD8(+) T cell epitopes in mice and humans. However, little is known about the epitope specificities of CD4(+) T cell responses. In this study, we identified 14 I-A(b)-restricted VACV-specific CD4(+) T cell epitopes by screening a large set of 2146 different 15-mer peptides in C57BL/6 mice. These epitopes account for approximately 20% of the total anti-VACV CD4(+) T cell response and are derived from 13 different viral proteins. Surprisingly, none of the CD4(+) T cell epitopes identified was derived from VACV virulence factors. Although early Ags were recognized, late Ags predominated as CD4(+) T cell targets. These results are in contrast to what was previously found in CD8(+) T cells responses, where early Ags, including virulence factors, were prominently recognized. Taken together, these results highlight fundamental differences in immunodominance of CD4(+) and CD8(+) T cell responses to a complex pathogen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号