首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2289篇
  免费   170篇
  2459篇
  2024年   3篇
  2023年   11篇
  2022年   33篇
  2021年   59篇
  2020年   31篇
  2019年   53篇
  2018年   78篇
  2017年   52篇
  2016年   92篇
  2015年   117篇
  2014年   156篇
  2013年   169篇
  2012年   222篇
  2011年   213篇
  2010年   141篇
  2009年   99篇
  2008年   152篇
  2007年   150篇
  2006年   114篇
  2005年   111篇
  2004年   107篇
  2003年   75篇
  2002年   67篇
  2001年   7篇
  2000年   9篇
  1999年   18篇
  1998年   18篇
  1997年   17篇
  1996年   11篇
  1995年   9篇
  1994年   6篇
  1993年   10篇
  1992年   7篇
  1991年   5篇
  1990年   5篇
  1989年   4篇
  1988年   6篇
  1987年   2篇
  1985年   4篇
  1983年   2篇
  1981年   6篇
  1980年   2篇
  1977年   2篇
  1972年   2篇
  1969年   1篇
  1909年   1篇
排序方式: 共有2459条查询结果,搜索用时 15 毫秒
61.
62.
The formation of protein aggregates is important in many fields of life science and technology. The morphological and mechanical properties of protein solutions depend upon the molecular conformation and thermodynamic and environmental conditions. Non-native or unfolded proteins may be kinetically trapped into irreversible aggregates and undergo precipitation or gelation. Here, we study the thermal aggregation of lysozyme in neutral solutions. We characterise the irreversible unfolding of lysozyme by differential scanning calorimetry. The structural properties of aggregates and their mechanisms of formation with the eventual gelation are studied at high temperature by spectroscopic, rheological and scattering techniques. The experiments show that irreversible micron-sized aggregates are organised into larger clusters according to a classical mechanism of diffusion and coagulation, which leads to a percolative transition at high concentrations. At a smaller length scale, optical and atomic force microscopy images reveal the existence of compact aggregates, which are the origin of the aggregation irreversibility.  相似文献   
63.
64.
Some arbuscular mycorrhizal fungi contain endocellular bacteria. In Gigaspora margarita BEG 34, a homogenous population of beta-Proteobacteria is hosted inside the fungal spore. The bacteria, named Candidatus Glomeribacter gigasporarum, are vertically transmitted through fungal spore generations. Here we report how a protocol based on repeated passages through single-spore inocula caused dilution of the initial bacterial population eventually leading to cured spores. Spores of this line had a distinct phenotype regarding cytoplasm organization, vacuole morphology, cell wall organization, lipid bodies and pigment granules. The absence of bacteria severely affected presymbiotic fungal growth such as hyphal elongation and branching after root exudate treatment, suggesting that Ca. Glomeribacter gigasporarum is important for optimal development of its fungal host. Under laboratory conditions, the cured fungus could be propagated, i.e. could form mycorrhizae and sporulate, and can therefore be considered as a stable variant of the wild type. The results demonstrated that - at least for the G. margarita BEG 34 isolate - the absence of endobacteria affects the spore phenotype of the fungal host, and causes delays in the growth of germinating mycelium, possibly affecting its ecological fitness. This cured line is the first manipulated and stable isolate of an arbuscular mycorrhizal fungus.  相似文献   
65.
66.
Antibiotic resistance necessitates the search for new bioactive compounds with novel mechanisms of action. Natural products derived from bacteria and fungi are widely used in the field of medicine and new environments can be explored as sources of antimicrobials. Bacteria associated with springtails have shown high inhibitory activity against pathogens. Here, we characterized a bacterial strain with high potential for antimicrobial activity, isolated from the gut of the springtail Folsomia candida Willem (Collembola: Isotomidae). The strain was characterized using the ‘analytical profile index’ and the ‘minimal inhibitory concentration’ assay to test for antibiotic resistance. Agar overlay and agar disk diffusion assays were used to test the inhibitory activity of the strain and its extract against a variety of pathogens, and reporter assays were used to investigate the mode of action. High‐performance liquid chromatography was used to analyze and fractionate the extract of bacterial culture, followed by additional assays on the fractions. The genome of the strain was screened for presence of antibiotic resistance genes and secondary metabolite gene clusters. The isolate was identified as Bacillus toyonensis Jiménez et al., but it displayed differences in metabolic profile when compared to the type species. The isolate was highly resistant to penicillin and inhibited the growth of a variety of pathogenic microorganisms. Genome analysis revealed an enrichment of resistance genes for β‐lactam antibiotics compared to the type isolate. Also, secondary metabolite clusters involved in the production of siderophores, bacteriocins, and nonribosomal peptide synthetases were identified. In conclusion, a unique Bacillus strain was isolated from the gut of F. candida, for which we provide evidence of inhibitory activity against an array of pathogens. This, coupled with high resistance to penicillin as substantiated by the presence of resistance genes, points to the potential of B. toyonensis VU‐DES13 to provide a new source of antimicrobial compounds.  相似文献   
67.
Worldwide, more than 1 in 10 infants is born prior to 37 weeks gestation. Preterm birth can lead to increased mortality risk and poor life-long health and neurodevelopmental outcomes. Whether environmental risk factors affect preterm birth through epigenetic phenomena is largely unstudied. We sought to determine whether preterm risk factors, such as smoke exposure and education, were associated with cervical DNA methylation in the prostaglandin E receptor 2 gene (PTGER2) and a repetitive element, long interspersed nuclear element-1 Homo sapiens-specific (LINE 1-HS). Second, we aimed to determine whether mid-pregnancy DNA methylation of these regions in cervical samples could predict the length of gestation. We obtained a cervical swab between 16–19 weeks gestation from 80 women participating in a Mexico City birth cohort, used pyrosequencing to analyze DNA methylation of PTGER2 and LINE 1-HS, and examined associations with maternal covariates. We used accelerated failure time models to analyze associations of DNA methylation with the length of gestation. DNA methylation of both sequences was associated with Pap smear inflammation. LINE 1-HS methylation was associated with smoke exposure, BMI and parity. In adjusted models, gestations were 3.3 days longer (95%CI 0.6, 6.0) for each interquartile range of PTGER2 DNA methylation. Higher LINE 1-HS methylation was associated with shorter gestations (-3.3 days, 95%CI -6.5, -0.2). In conclusion, cervical DNA methylation was associated with risk factors for preterm birth and the length of gestation.  相似文献   
68.
Over the last two decades, the importance of conserving genetic resources has received increasing attention. In this context the role of home gardens as repositories of biological diversity has been acknowledged but still a comprehensive, interdisciplinary investigation of their agro-biodiversity is lacking. Home gardens, whether found in rural or urban areas, are characterized by a structural complexity and multifunctionality which enables the provision of different benefits to ecosystems and people. Studies carried out in various countries demonstrate that high levels of inter- and intra-specific plant genetic diversity, especially in terms of traditional crop varieties and landraces, are preserved in home gardens. Families engage in food production for subsistence or small-scale marketing and the variety of crops and wild plants provides nutritional benefits. At the same time, home gardens are important social and cultural spaces where knowledge related to agricultural practices is transmitted and through which households may improve their income and livelihoods. The present article summarizes available literature on the biological and cultural significance of agro-biodiversity in home gardens. It discusses future constraints and opportunities in home garden research, in the prospect of defining and promoting their role in conservation of agricultural biodiversity and cultural heritage.  相似文献   
69.
Arbuscular mycorrhizal (AM) fungi produce an extensive hyphal network which develops in the soil, producing a specialised niche for bacteria. The aim of this paper is to review briefly the interactions shown by these symbiotic fungi with two bacterial groups: (i) the plant-growth promoting rhizobacteria (PGPRs) which are usually associated with fungal surfaces in the rhizosphere, and (ii) a group of endocellular bacteria, previously identified as being related to Burkholderia on the basis of their ribosomal sequence strains. The endobacteria have been found in the cytoplasm of some isolates of AM fungi belonging to Gigasporaceae and offer a rare example of bacteria living in symbiosis with fungi. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
70.
Degradation of aromatic hydrocarbons by aerobic bacteria is generally divided into an upper pathway, which produces dihydroxylated aromatic intermediates by the action of monooxygenases, and a lower pathway, which processes these intermediates down to molecules that enter the citric acid cycle. Bacterial multicomponent monooxygenases (BMMs) are a family of enzymes divided into six distinct groups. Most bacterial genomes code for only one BMM, but a few cases (3 out of 31) of genomes coding for more than a single monooxygenase have been found. One such case is the genome of Pseudomonas stutzeri OX1, in which two different monooxygenases have been found, phenol hydroxylase (PH) and toluene/o-xylene monooxygenase (ToMO). We have already demonstrated that ToMO is an oligomeric protein whose subunits transfer electrons from NADH to oxygen, which is eventually incorporated into the aromatic substrate. However, no molecular data are available on the structure and on the mechanism of action of PH. To understand the metabolic significance of the association of two similar enzymatic activities in the same microorganism, we expressed and characterized this novel phenol hydroxylase. Our data indicate that the PH P component of PH transfers electrons from NADH to a subcomplex endowed with hydroxylase activity. Moreover, a regulatory function can be suggested for subunit PH M. Data on the specificity and the kinetic constants of ToMO and PH strongly support the hypothesis that coupling between the two enzymatic systems optimizes the use of nonhydroxylated aromatic molecules by the draining effect of PH on the product(s) of oxidation catalyzed by ToMO, thus avoiding phenol accumulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号